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And what are these Fluxions? The Velocities of evanescent Increments? And what are these same
evanescent Increments? They are neither finite Quantities nor Quantities infinitely small, nor yet nothing.
May we not call them the Ghosts of departed Quantities?

Bishop Berkeley, 1734
from The Analyst: A Discourse Addressed to an Infidel Mathematician

1 Introduction

The idea of a limit lies at the logical foundation of calculus. Practically speaking, it is not necessary to
think about limits when using calculus to solve real-world problems; indeed the full formalism of limits
was not developed until after calculus had been practiced and applied successfully for hundreds of years.
Nevertheless, it is an inspired idea that brings clarity to many ideas that would otherwise be fuzzy and vague.
The quotation above is an excerpt from one of the an early critiques of calculus, when the subject was still
done in an informal manner (complete with phrases like “infinitely small” that had no precise meaning).

Limits are a mathematical idealization. They address situations like we saw in the last lecture, where we
know that the tangent line is “like” a secant line between extremely near points, yet none of these secants is
precisely the tangent. I like to view them in terms of experiments: while every experiment has error, we can
always shrink this error by using more precise instruments and performing the experiment more precisely.
The theoretically perfect measurement, however unattainable in the real world, is what we call the limit. It
is the sort of Platonic form of a well-done experiment.

This lecture discusses what exactly the limit concept idealizes, and presents various examples and thought
experiments to show what it does and does not mean, as well as the connection to the tangent lines we
discusses last time. We will return to limits in more depth as the course goes on.

The reference for today is Stewart §2.2.

2 Dot and circle notation

To highlight exactly what we mean by limit, we will sometimes need to discuss some very bizarre functions.
These functions are mainly used in thought experiments, but functions like this do sometimes arise, for
example, in computer science (where the subtleties of how computations are performed result in strange
“edge cases”). I will describe the notation with the following three examples.
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When I draw: I mean:

f(x)

x

1

1

f(x) = x for all values of x except x = 1. The value f(1) is not
defined.

f(x)

x

1

1

f(x) = 1 for all values of x except x = 1; f(1) = 2. This is often

written: f(x) =

{
1 if x 6= 1

2 if x = 1
.

1

1

f(x) =

{
0 if x < 1

1 if x ≥ 1
(this is called the Heaviside function)

So empty circles ◦ mean that the graph is “punctured” at the indicated point (and only at the indicated
point) while filled circles show where a value of the function has been “inserted” in place, despite its
surroundings.

For a very simple example of where these sorts of graphs might be used, consider the function f(x) = x2−x
x−1 .

Then f(1) should be 0
0 , which is undefined, yet for all other values of x, this is equal to x(x−1)

x−1 = x. So the
graph looks like the first example above.

It is a bit confusing at first to think that f(x) = x and f(x) = x2−x
x−1 could have different graphs; after all

the first function is just a “simplification” of the first. Of course this is true; the point is that simplifying a
function does not give exactly the same function; it “fills in” some of the holes in the graph be eliminating
the cases that look like 0/0. This is one reason why you should be careful to simplify expressions before
programming them into a computer: a computer will have an error if it attempts to divide 0 by 0. You can
think of the empty circles ◦ as indicating inputs that would cause a computer to crash (unless the gap is
“filled in” by a black dot elsewhere).

3 Limits as ideal measurements

As I said in the introduction, you can think of values of a function as outcomes of an experiment. Any real
world experiment has some error. In the case of filling bottles: you can never measure exactly 1mL of water
into a bottle; the best you can do is measure an amount that is equal to 1mL up to the accuracy of your
measuring instrument.

Every time we discuss a limit in mathematics, you can think of this as meaning: we are measuring the
value of a function at a point, but we are assuming that we can’t actually put the exact input into the
function that we care about. So we expect some error in the output. The limit is the idealization of our
measurement.

To illustrate this idea, imagine that at the end of this experiment, we will measure the result using a
measuring stick. The measuring stick has tick marks that are very close together (say a thousandth of an
inch apart). So we can measure the result to within a thousandth of an inch. As long as we perform the
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experiment carefully enough (i.e. put a value into the function that is very close to the value we care about),
we’ll always measure the same result on the yardstick. This value is the limit, at least to accuracy of a
thousandth of an inch. However, we could then go and get a new measuring stick, capable of measuring
the result to within a millionth of an inch. We might notice that now our measurements are not always the
same, because we are measuring more accurately. But we can respond by performing the experiment more
carefully, putting much more precise inputs into the function, until we always measure the same result, to a
millionth of an inch.

The process described above could go on forever. The limit is the exact, ideal value that we appear to
be measuring, first to a thousandth of an inch, then to a millionth of an inch, and so on. We never measure
it exactly, which is why it is an idealization.

For example, suppose we are measuring the slope of a tangent line. We measure it by drawing a secant
line between two very close points. If we make sure the points are close enough, and measure to some given
accuracy, we’ll always measure the same slope; it is exactly like we’re measuring the slope of the tangent
line. The more accurate we want the slope, the closer we must be sure to move the points. But we can
never move the points all the way together without dividing 0 by 0. In this case, drawing a secant line is an
imperfect experiment, and the slope of the tangent line is the idealized value of this experiment.

We will use the following notation and terminology for limits. The number 1 can be replaced with any
other number.

• lim
x→1

f(x) means the ideal measurement of f(x), when we put in values of x close (but not equal) to 1.

• lim
x→1+

f(x) means the ideal measurement of f(x), when we put in values of x larger than (but not equal

to) 1. This is also called the limit limit from the right.

• lim
x→1−

f(x) means the ideal measurement of f(x), when we put in values of x smaller than (but not

equal to) 1. This is also called the limit from the left.

The first type of limit (the usual sort we will consider) is sometimes called a two-sided limit, while the
second two are called one-sided limits.

Example 3.1. Consider the third example function from the previous section.

1

1

Then for this function:

• f(1) = 1, by definition.

• lim
x→1−

f(x) = 0, because f(x) = 0 for all values of x less than 1, no matter how close. Note that the

fact that f(1) = 1 is irrelevant to the limit.

• lim
x→1+

f(x) = 1, because f(x) = 1 for all values of x greater than 1. Here again, this is unrelated to

the fact that this is also the actual value f(1).

• lim
x→1

f(x) does not exist because the two one-sided limits are not equal.

In general, the two-sided limit only exists if both one-sided limits exist, and are equal to each other.
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Example 3.2. Phases of water. One unusual property of water is the fact that it expands when it freezes.
The result of this is that the same substance (H2O) drops somewhat in density when its temperature drops
below 0◦C. Liquid H2O has density 1.00g/mL1. Solid H2O (ice) has density 0.92g/mL at temperatures
near 0◦C. Let d(t) be the following function: it is the density of H2O, in g/mL, when its temperature is t
degrees Celcius (at standard pressure). This is an example of a function with two different two-sided limits.
In fact:

• lim
x→0−

d(t) = 0.92. Any experiment conducted on H2O at temperature below (but close to) 0 will return

density essentially 0.92.

• lim
x→0+

d(t) = 1.00 Any experiment conducted on H2O at temperature above (but close to 0 will return

density essentially 1.00.

• lim
x→0

d(t) does not exist, because if you attempt to conduct an experiment on H2O at 0◦C, it might be

solid, liquid, or some of both; the measured density in such experiments will always vary between 0.92
and 1.00, no matter how accurately you conduct the experiment.

In fact, this function is an example of a real-world function that is not defined at an isolated point.
This is because d(0) has no well-defined value. The reason is that if H2O has temperature 0◦C, it could be
either solid or liquid, and these two have different densities. So there is no reasonably value d(0). So the
graph of d(t) looks something like the following (in fact, both “ends” should be slightly curves, but I have
not tracked down the actual experimental data on this topic).

density (g/mL)

temperature (◦C)

1.00

0.92

0

Example 3.3. Absolute zero Suppose that f(t) is some function of temperature, where t is the temperature
in Kelvin. Then the value f(0) is not accessible by experiment, since it is impossible to actually reach absolute
0. Similarly, f(x) is not accessible for any negative value of x. We can, however, attempt to measure
limx→0+ f(t). To do this, we measure f(t) for very small temperatures t, brought down as close as possible
to t = 0. By doing this, and bringing the experiment apparatus better and better, we could approximate
this limit to more and more decimal places. So for physical quantities depending on temperature (in Kelvin),
the limit from the right makes sense, but neither the value at 0, not the limit from the left, can be accessed
by physical experiment.

4 Examples

In this section, we discuss some examples of limits, for functions given explicitly by formulas, or from dot
and circle pictures.

1The density of liquid water varies slightly with temperature, but below 30◦C or so, its density is 1.00 when rounded to the
nearest hundredth.
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Example 4.1. (from the last lecture) What is the slope of the tangent line to the graph of y = −x2 +12x−11
at (1, 0)?

Answer. The tangent line is like an ideal secant line. As we saw in the previous lecture, the slope of the

secant line from (1, 0) to (x, y) (where y = −x2 + 12x−11) is given by the function s(x) = −x2+12x−11
x−1 . This

expression simplifies to 11− x, so in fact s(x) = 11− x for all x 6= 1. But s(x) is not defined at x = 1 since
you cannot draw a secant from a point to itself.

s(x)

x

10

1

Just as the secant lines approach the tangent line, the slope s(x) approaches the slope of the tangent
line as x approaches 1. So the slope of the tangent line is lim

x→1
s(x). This limit is equal to 10, because all

experiments near x = 1 (but not exactly 1) give slope 11− x, which goes to 10 as x goes to 1.

The next example consists of some thought experiments about a couple rather contrived and exotic
functions. You should mainly view it at as a way to probe for intuition about what strange things are
possible for rather unusual functions.

Example 4.2. Consider the following two functions, f(x) and g(x).

f(x)

x

2

1

1 2 3

g(x)

x

2

1

1 2 3

(a) For which values of c between 1 and 3 does lim
x→c

f(x) note exist? What about lim
x→c

g(x)?

(b) For which values of c between 1 and 3 does lim
x→c

(f(x) + g(x)) exist?

(c) Draw the graph of the product f(x)g(x).

Solution.

(a) At x = 1, the limit of f(x) from the left is 1, but the limit from the right is 0. So the limit lim
x→1

f(x)

does not exist. Similarly, lim
x→2−

f(x) = 0 and lim
x→2+

f(x) = 1, so lim
x→2

f(x) does not exist since these are

different. At all other points, the two one-sided limits exist and coincide.

Similarly, for g(x), the picture shows that:

5



lim
x→1−

g(x) = 0 lim
x→2−

g(x) = 2

lim
x→1+

g(x) = 1 lim
x→2−

g(x) = 1

lim
x→1

g(x) does not exist. lim
x→2

g(x) does not exist.

So the two-sides limit lim
x→c

g(x) does not exist for c = 1 or c = 2. It does exist for all other values of c

between 1 and 3 however.

Note, as usual, that the actual values f(1) = 1, f(2) = 1, g(1) = 1, g(2) = 2 do not matter for the
existence of the limit, since the limit is idealizing experiments which do not hit the value exactly.

(b) For all value of c, lim
x→c−

(f(x) + g(x)) = lim
x→c−

f(x) + lim
x→c−

g(x) (assuming that both these limits exist),

and similarly for limits from the right. For all values of c besides 1 and 2, this shows that the two
one-sides limits of f(x) + g(x) exist and are equal. Now look what happens at c = 1 and c = 2.

lim
x→1−

(f(x) + g(x)) = lim
x→1−

f(x) + lim
x→1−

g(x)

= 1 + 0

= 1

lim
x→1+

(f(x) + g(x)) = lim
x→1+

f(x) + lim
x→1+

g(x)

= 0 + 1

= 1

So despite the fact that the limit exists at c = 1 for neither f(x) nor g(x), in fact the limit of the sum
does exist: lim

x→1
(f(x) + g(x)) = 1. What has happened is that their two “jumps” cancel out.

In fact, the same thing happens at c = 2.

lim
x→2−

(f(x) + g(x)) = lim
x→2−

f(x) + lim
x→2−

g(x)

= 0 + 2

= 2

lim
x→2+

(f(x) + g(x)) = lim
x→2+

f(x) + lim
x→2+

g(x)

= 1 + 1

= 2

So the limit also exists at 2: lim
x→2

(f(x) + g(x)) = 2.

So in fact, the limit exists at all values c between 1 and 3. In fact, if you draw the graph of
f(x) + g(x), this is what it looks like.
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f(x) + g(x)

x

2

1

3

1 2 3

This graph is very strange: although the limit exists at every point, the limit is not always equal to
the value of the function. I encourage you to think through why the graph looks this way.

(c) Probably the easiest way to draw this graph is to notice that multiplying by f(x) simply leave g(x) the
same (since they are multiplied by 1) at all values except those in the interval (1, 2), which are sent to
0. The graph looks as follows.

f(x) · g(x)

x

2

1

1 2 3

Notice that the limit of f(x)g(x) exists at all points except x = 2, even though the limit is not equal
to the value of the function at x = 1.

Example 4.3. What is the slope of the tangent line through (4, 2) on the graph of y =
√
x?

Solution 1. Suppose that x 6= 4, and consider the secant line through (4, 2) and (x,
√
x). The slope of

this secant line is given by the following function.

s(x) =
rise

run
=

√
x− 2

x− 4
.

If you compute this function for some values of x close to x = 4, you will see for example that s(5) ≈
0.24
1 = 0.24, s(4.1) ≈ 0.0248

0.1 = 0.248, and s(4.01) ≈ 0.002498
0.001 = 0.2498. So these value seem to tending to

0.25, but as usually we cannot actually perform the ideal experiment and plug in s(4).
In this case, there is a little algebraic trick to compute the limit: we can rationalize the numerator. You

may have seen this trick in a different form, namely rationalizing the denominator to simplify expressions;
here we are essentially doing the reverse. Observe that for all x,
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√
x− 2

x− 2
=

√
x− 2

x− 2
·
√
x+ 2√
x+ 2

=
x− 2

(x− 2)(
√
x+ 2

=
1√
x+ 2

Actually, the last step only works for x 6= 2, since the terms we cancel on the top and bottom would be 0
at x = 2. Nevertheless, this equation hold at all nearby values of x, and we can therefore see that the ideal
value of s(x) for x near 4, that is the limit limx→4 s(x) is equal to 1√

4+2
= 1

4 = 0.250.

Solution 2. For a slightly less standard solution, observe that y =
√
x is the same as y2 = x (for y

positive, at least). So we can consider the slopes of secant lines from (4, 2) to (y2, y), for values of y very
close to 2. The slope of such a secant line is y−2

y2−4 = y−2
(y+2)(y−2) = 1

y+2 , so the limit as y goes to 2 is 1
4 , as before.

Example 4.4. What is the limit limx→0+ sin( 1
x )

Solution. Notice that x shrinks to 0, 1
x grows towards infinity at a faster and faster rate. So when 1

x is
plugged into sin(x), the value is some point on a sine wave, where this point is moving faster and faster
towards infinity. In other words, the oscillations of the sine wave become more and more rapid. The resulting
graph looks something like this.

In fact, the limit as x goes to 0 does not exist. You can see why this is, again, by thinking in terms
of experiments. Suppose that we set up an experiment where we are sure that x will be positive and within
a thousandth of 0. Since 1000π > 1000, this means we might well end up plugging in x = 1

1000π , obtaining a
result of 0. On the other hand, we could just as well happen to plug in x = 1

1000.5π , obtaining a result of 1.
In fact, no matter what the “tolerance” of the input, the result of the experiment could still vary between
−1 and 1. So there is no ideal measurement in this case. The limit does not exist.
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