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1 Introduction

This is the second part of our discussion of limits involving infinity. In this lecture, we consider limits as x
goes to infinity (or minus infinity). The techniques are very similar to what we saw last time: we compute this
limits by attempting to “plug in infinity” into the function. In many cases, it will be necessary to modify the
function in some way or another to get something that is well-defined. Later, we’ll discuss a more systematic
technique, ’'Hopitals rule, for computing limits like this, but it is worth seeing more direct methods first (the
more direct methods tend to be easier to apply, but sometimes require a bit more cleverness to find).

The reference for today is Stewart §2.5 (same as last time).

2 What is a limit at infinity?

T’ll start by writing down a couple obvious examples of limits at infinity. These will illustrate what, exactly,
a limit at infinity means.

Iim — = 0
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Here’s a qualitative way to describe what these two limits mean: if x is chosen very large, then % will be
very small. In fact, if z is large enough, the number % will fall within any possible margin of error of 0.
This suggest the following quasi-formal definition of a limit at infinity.

lim f(z) =L means that any measuring instrument, no matter how accurate,
Tr—r o0

will record f(x) = L for once x gets large enough.

Ezample 2.1. Suppose that the amount of a certain radioactive material in a substance after ¢ years is e™*

grams. If we have a single measuring instrument, which is only accurate to within 0.001 grams, then sooner
or later, this measuring instrument will claim that there are 0 grams of the radioactive material left. There
may still be trace amounts, that could be detected by a more accurate instrument. But that instrument,
too, will eventually claim that there are 0 grams left (since it has some margin of error as well). This is what
it means the lim;_,o et = 0.

In applications, the “limit at infinity” basically means the “behavior after a long time.” In mathematics,
however, we can’t just say “a long time,” since we’re not allowed to have any opinions about how accurate is
accurate enough. So instead we use the symbol co. If you like, this symbol means “a number that is always
large enough.”



This same sort of thinking is also a good way to explain what it means for a limit to equal infinity. For
example, consider the following fact.

This means that % will be “large enough” for any particular purpose, as long as you can get x to be close
enough to 0. Here’s a physical example.

Ezample 2.2. The ideal gas law states (among other things) that if a certain quantity of an ideal gas® is
held at constant temperature, then the product of pressure and volume is constant; that is PV = C, where
P is the pressure, V is the volume, and C' is some constant. This means that P = % Now think about
what happens if you try to shrink the volume to 0: limy _, o+ % = 00. The physical meaning of this is: if you
compress the gas small enough (but keep temperature constant), then the pressure will become arbitrarily
large. No matter how large you want the pressure to be, it will be that large once the gas is compressed to
sufficiently small volume.

Now that we have some informal ways to think about what oo means, we’ll see some techniques to
compute limits at infinity.

3 Examples

The following examples illustrate the main computational tools that are helpful in evaluating limits at
infinity. The methods we’ll see today follow the same general form.

e First try naively substituting co or —oo into the expression for z (more formally, this is shorthand
for taking limits of each part individually, e.g. taking the limit of the numerator and denominator
separately).

e If this first step gives an unambiguous result, we’re done. Otherwise, it may give something like 0/0 or
0o0/00. In this case, we modify the original expression (most commonly by multiplying by some factor
in the numerator and denominator) and try again.

Later we’ll learn another frequently-useful trick called ’'Hopital’s rule; for now we’ll stick to elementary
methods.
We will compute the following limits as examples.
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LOf course no gas is actually “ideal,” but we’re speaking in broad strokes here.



9. lim (\/x2 +1-— x)
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1. Naive substitution would give lim = = , which is not determinate. So we must
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perform some modification. In this case, we can transform the denominator to give a finite limit, by

scaling it with a factor of x, as follows.
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2. The same modification will work for the limit in this direction.
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3. Naive substitution works here: lim = = — = —1. Remember as usual that
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notation like e™*° is really just shorthand for lim e”.
Tr—r— 00

4. Naive substitution does not work here: it would yield 2. In this case, we can tame both the numerator
and denominator by multiplying them by 1/e®.
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5. Here, prevent the indeterminate form oo/oo by dividing on the top and bottom by the function 22, This
function is chosen because it is “roughly” the rate of growth of both the numerator and denominator.
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Note that the limit as # — —oo is the same: it is also 1. So the horizontal line y = 1 is an asymptote
in both directions.

6. As x — o0, the denominator grows arbitrarily large, while the numerator oscillates between —1 and
1. We cannot write a limit for cosxz as x — oo, but we don’t need to: since it is bounded between —1
and 1 for all time, and we are dividing by arbitrarily large numbers, the quotient becomes arbitrarily
small as x grows. So the limit must be 0. Here is the notation I like to use to succinctly express this
argument.

. COST (bounded)
lim =
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The more formal way to establish this limit is to use the squeeze theorem: _71 < % < %; the limits
of both bounding functions are 0, so therefore this must also be the limit of the bounded function.

7. The numerator is no a polynomial, but you should expect it to grow about as fast as V&2 = x (warning:
V2 is only equal to x when z > 0; otherwise it is equal to —z, since the square root is always a positive
number). So modify the function by dividing by x on the top and bottom, as follows.
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Note. If you evaluate the limit instead as * — —oo (as we did in class in my section on Thursday),
there is a small wrinkle: when z is negative, the correct substitution is vz2 +1-1/x = —/1 4 1/22.
The reason for this is that 1/ is negative in this case, so 1/z = —4/1/z2. So the resulting limit is —3.
This fact (that a  is only Va2 if x> 0) is important to remember in many situations, but it isn’t the
concept we're trying to emphasize at the moment, so I decided to write the simpler version (z — 00)
in the notes.

8. Evaluate naively: lim (\/ z2 41— x) =00 — (—00) = 00 + 00 = o0.
T——00



9. Naive evaluation would give lim (\/ 2 +1-— x) = 00 —o00, which is not defined. So some modification
Tr—r00
is needed. We’ve seen in other contexts that expressions involving square roots are often usefully
transformed by multiplying by a “conjugate” expression (we called this procedure “rationalizing the
numerator” before). This modification allows us to evaluate the limit in this case as follows.
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The function we have just studied has the following somewhat interesting graph.

It has what is called a slant asymptote of y = —2x for negative values of x, while it has a horizontal
asymptote of y = 0 for x > 0. If you are skilled with algebra, see if you can show clearly why the
function begins to hug closely to the line y = —2x for large negative values of x.

4 Summary of techniques

In most cases of the examples above, we resolved an indeterminate form by canceling the fastest-growing
part of the numerator or denominator of a function. Generally speaker, it seems to work best to first identify
whether the numerator or denominator is growing faster, and then cancel the fastest-growing part. This
technique usually works best to deal with a form that is giving co/cc.



In some cases, this method will not work; in the last limit we attempted to compute, we had the
indeterminate form oco—oo. In this case, we needed to perform a different modification, namely “rationalizing
the numerator.” This modification is an example of the fact that there are many other ways to modify the
expression of a function; different ideas are useful in different situations.



