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1 Introduction

Today we discuss a technique called implicit differentiation, which provides a quicker and easier way to
compute many derivatives we could already do, and also can be used to evaluate some new derivatives. The
main example we will see of new derivatives are the derivatives of the inverse trigonometric functions.

Implicit differentiation is not a new differentiation rule; instead, it is a technique that can be applied with
the rules we’ve already learned. The idea is this: instead of trying to tackle the desired function explicitly,
instead just find a simple equation that the function satisfies (called an implicit equation. If you differentiate
both sides of this equation, then you can usually recover the derivative of the function you actually cared
about with just a little algebra.

The reference for today is Stewart section §3.5 (for implicit differentiation generally) and §3.6 (for inverse
trig functions specifically).

2 Review: Inverse functions

Functions like
√
x, lnx, tan−1 x (which is also written arctan(x)) and so forth are examples of what are called

inverse functions. The idea is that they invert to the effect for some other function. In these cases:

• (
√
x)2 = x, so

√
x is the inverse of x2.

• eln x = x, so lnx is the inverse of ex.

• tan(tan−1 x) = x, so tan−1 x is the inverse of tanx.

The general definition is: g(x) is an inverse function of f(x) if f(g(x)) = x for all x in the domain of g.

Note. Many functions have more than one inverse function. For example, −
√
x is also an inverse function

of x2.
Graphically, you obtain inverse functions by reflecting the graph of the original function across the line

y = x; that is, switch the roles of x and y, as in the following pictures.
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y = ex

y = lnx

y = x2

y =
√
x

y = −
√
x

Note in the second picture that the two possible inverse functions together form the reflection of the
original graph, but neither does individually.

The main inverse functions we are interested in are the inverse trigonometric functions. These are labeled
on calculators by sin−1, cos−1, tan−1, and they are often called in other places by the names arcsin, arccos, arctan
(there are also, of course, inverse functions of sec, csc, and cot, but we won’t discuss these as much). In these
cases, flipping the graph of the original functions give plots that have many y values of each x value, so there
are many possible inverse functions. By convention, we simply choose one arc of each of these graphs to get
the functions that we call sin−1, cos−1, tan−1. The following pictures show the arc chosen in solid red, and
the rest of the “flipped graph” in dashed red.

Note in particular that the conventional “inverse trigonometric functions” have the following ranges.
It is confusing that the inverse cosine has a different range from the other two, but you can always

visualize these pictures to remember which range should be which.

Function Range
sin−1(x) [−π/2, π/2]
cos−1(x) [0, π]
tan−1(x) (−π/2, π/2)
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y = sin(x)

y = sin−1(x)

y = cos(x)

y = cos−1(x)

y = tanx

y = tan−1(x)
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3 Derivatives of inverse functions

If you can differentiate a function, you can always write an expression for the derivative of its inverse. The
technique is the first example of what we’ll later call implicit differentiation. I’ll illustrate the idea first by
finding the derivative of the natural log function.

First, write the following equation.

eln x = x

This equation can be regrading as basically just the definition of the natural logarithm. Except it
doesn’t define it explicitly ; it defined it implicitly, but telling an equation it must satisfy. Now the technique
is: differentiate both sides of this equation. Since the two sides are equal, their derivatives must be equal
also.

d

dx
eln x =

d

dx
x

Now consider the two sides of this equation separately.

Left side:
d

dx
eln x. This is a composition of two functions: lnx and ex. So you can differentiate it with

the chain rule, using the fact that d
dxe

x = x. In Leibniz notation, it looks like this.

d

dx
eln x =

d

d(lnx)
eln x · d

dx
lnx (chain rule)

= eln x · d
dx

lnx (derivative of ex)

= x · d
dx

lnx (since eln x = x)

Right side:
d

dx
x. This is easy: the derivative of x is just 1.

d

dx
x = 1

Putting these together: We can now just set these two expressions equal to each other, and then solve
the equation.

d

dx
eln x =

d

dx
x (starting point)

x
d

dx
lnx = 1 (analysis of the two sides, above)

d

dx
lnx =

1

x
(divide both sides by x)

The result of this work is that, as if by magic, we were able to solve for the derivative of lnx.

Aside. Here’s a quick and easy way to remember the derivative of natural log, if you have a good visual
imagination. If this doesn’t make any sense to you, don’t worry about; it isn’t essential. The derivative of
ex is just ex. That means that if (a, b) is any point on the graph y = ex, then the slope of the tangent line is
b. Now, “flip” this picture be switching x and y. That means that (b, a) is a point on the graph of natural
log. The slope of the tangent line flips becomes 1

b (because rise and run have traded placed). So: the slope
of the tangent line to the graph y = lnx is just the reciprocal of the x-coordinate. This is the same thing
as saying that d

dx lnx = 1
x . It is a good exercise to think this through and understand why this is logically

equivalent to the algebra with the chain rule I’ve shown above.
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3.1 Differentiating inverse trig functions

In this subsection, I’ll show how to compute the derivatives of sin−1 x and tan−1 x, using the same technique
as I’ve shown above. As before, the method is: write down an equation satisfied by the function, differentiate
both sides of this equation, and solve.

First, consider tan−1 x. It is an inverse function of tangent; this just means that it satisfies this equation.

tan(tan−1 x) = x

Now, differentiate both sides of the equation. The right side is easy. The left side requires the chain rule.
It also requires the fact that the derivative of tanx is sec2 x, which we found in a previous lecture using the
quotient rule.

d

dx
tan(tan−1 x) =

d

dx
x

sec2(tan−1 x)
d

dx
tan−1 x = 1 (Chain rule on the left; easy derivative on the right)

d

dx
tan−1 x =

1

sec2(tan−1 x)

Now, we at least have a formula for the derivative of tan−1 x, and in principle this means our work is
done. But it is a good idea to simplify this expression slightly, because it will become something much
simpler. To do this, remember exactly what tan−1 x is.

tan−1 x is precisely that angle in (−π/2, π/2) whose tangent is x. So if we draw the following right
triangle, the marked angle will have measure tan−1 x radians.

1

x

tan−1 x

Remember: tan−1 x is an angle. Since tanx takes angles to ratios, tan−1 takes ratios back to angles.
In the triangle above, it is the angle marked with the little arc in the corner.

Where did this triangle come from? This was the most pressing question when we talked about
this picture in class. The answer is: I made it up. It is a prop. But I’ve made it up with a specific purpose:
it’s purpose is to have the angle tan−1 x in it. The whole purpose of the triangle is to exhibit this angle so
that I can study it.

Back to the man discussion, remember what we’re trying to find here. We want to know what sec2(tan−1 x)

is. I’ve drawn a triangle with the angle tan−1 x in it. Since the secant of an angle is
hypotenuse

adjacent
, we just

need to find the hypotenuse of this triangle. We can get this from the Pythagorean theorem.
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1

x

√
1 + x2

tan−1 x

So the secant of the angle tan−1 x is precisely
√

1 + x2/1 =
√

1 + x2. So sec2(tan−1 x) = 1 + x2. Using
this, we can put the derivative of tan−1 in its simplest form.

d

dx
tan−1 x =

1

1 + x2

Alternative method. Recall that there is an identity (one of the many equivalent forms of the Pythagorean
theorem) sec2 x = tan2 x+ 1. We could also have used this identity to do this algebra, as follows:

sec2(tan−1 x) = 1 + tan2(tan−1 x)

= 1 +
(
tan(tan−1 x)

)2
= 1 + x2

Aside. Notice that the only fact we’ve used about tan−1 is that it is an inverse function of tanx. So
actually, 1

1+x2 is the derivative of any inverse function of tanx, not just the “standard” one that we call

tan−1. If you look at the picture in the last section, you’ll see why this makes sense: if you flip the graph of
y = tanx, there are many arcs, of which y = tan−1 x is only one, but all of them are just vertical translates
of each other. So they all have the same derivative function.

Now let’s move on to sin−1 x. The technique is the same. Write an equation describing sin−1 x implicitly,
and differentiate both sides of it. The right side is easy, and the left side uses the chain rule.

sin(sin−1 x) = x (because it’s an inverse function)

d

dx
sin(sin−1 x) =

d

dx
x (differentiate both sides)

cos(sin−1 x)
d

dx
sin−1 x = 1 (chain rule on left; easy derivative on right)

d

dx
sin−1 x =

1

cos(sin−1 x)
(divide on both sides)

Like before, in principle we’re done here: we have a totally well-defined expression for the derivative of
sin−1, which you can plug into a computer and everything. But again, it’s worth re-expressing it in a simpler
way. Like before, there are two standard ways to do this, which both just boil down to the Pythagorean
theorem. The quickest one is to use the identity cos2 x+sin2 x = 1. Letting x be the angle sin−1 x, this says:
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cos2
(
sin−1 x

)
+ sin2

(
sin−1 x

)
= 1[

cos(sin−1 x)
]2

+ x2 = 1[
cos(sin−1 x)

]2
= 1− x2

cos(sin−1 x) =
√

1− x2

So this gives the simplification that we want.

d

dx
sin−1 x =

1√
1− x2

Technical point I’ve swept under the rug: I took the square root of both sides of the equation
[
cos(sin−1 x)

]2
=

1 − x2 above, to get cos(sin−1 x) =
√

1− x2. But technically, all I could conclude here is cos(sin−1 x) =
±
√

1− x2 (two numbers whose squares are equal are not necessarily equal: they are either equal or oppo-
site). So how do we know that the plus sign is correct? Here is where we must use the specific definition
of sin−1 x: it doesn’t return just any angle whose sine is x: it return the angle in [−π2 ,

π
2 ] whose sine is x.

And the cosine of any angle in [−π/2, π/2] is not negative. If we chose a different inverse function of sinx,
the derivative could be − 1√

1−x2
instead. Look at the picture in the previous section to see that this makes

sense. If this confuses you, don’t worry too much about it; I mention it for completeness.
Differentiating cos−1 x with this method is completely analogous. It is left to you as a homework problem.

3.2 Differentiating any inverse function

The method shown above works in general to differentiate any inverse function you like. Here’s how it works:
suppose that f(x) is any function, and f−1(x) is an inverse function. Follow the same steps as above.

f(f−1(x)) = x (inverse function)

d

dx
f(f−1(x)) =

d

dx
x (differentiate both sides)

f ′(f−1(x))
d

dx
f−1(x) = 1 (chain rule)

d

dx
f−1(x) =

1

f ′(f−1(x))

This last line is a valid formula for inverse function. Here are some examples.

Example 3.1. Suppose f(x) = ex. Then f ′(x) = ex and f−1(x) = lnx. So d
dx lnx = 1

eln x = 1
x .

Example 3.2. Suppose f(x) = sinx and f−1(x) = sin−1(x). Then d
dx sin−1 x = 1

cos(sin−1(x))
, as in the last

section.

Example 3.3. Suppose f(x) = x2 and f−1(x) =
√
x. Then f ′(x) = 2x, so d

dx

√
x = 1

2f−1(x) = 1
2
√
x

.

4 Implicit and explicit functions

In the previous sections, we’ve seen that a useful way to differentiate inverse functions like lnx of sin−1 x
is not to attack them directly, but instead write some equation that describes them implicitly, differentiate
both sides of the equation, and solve. We’re now going to discuss this technique in more generality.

As a first step, I want to elaborate on what it means to write an implicit equation. An implicit equation
is just an equation in two variables x and y that is not necessarily of the form y = f(x). Here are some
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examples.

Explicit equations:

• y =
√
x

• y =
√

1− x2

• y = x
x−1

Implicit equations:

• y2 = x

• x2 + y2 = 1

• xy = x+ y

One major distinction between explicit and implicit equations is that implicit equations don’t necessarily
describe graphs of functions. Instead, they describe graphs of curves. Perhaps the simplest example is this
implicit equation, which defines a circle.

x2 + y2 = 1 describes this curve:

Now there are two graphs that lie on the circle above: y =
√

1− x2 and y = −
√

1− x2 (one is the upper
semicircle, and one is the lower semicircle). So the implicit equation x2 + y2 = 1 describes two different
explicit equations. This is often the case with implicit equations.

Here are two more examples of implicit equations, which we’ll revisit in the last section.

Example 4.1. (Descartes’ leaf) Consider the following equation.

x3 + y3 = 6xy

This is an implicit equation. It describes the curve shown below (made with Wolfram alpha).
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This curve is traditionally called the “folium of Descartes” (“folium” is Latin for “leaf”). This equation
first occurred in a letter from Descartes to Fermat (Fermat was a lawyer by profession, but did mathematics
as a hobby). Fermat claimed to have a method to find tangent lines to any curve, and Descartes invented
this curve as a challenge to Fermat. Fermat was successful in finding tangent lines to the curve. Today,
however, the problem of finding tangent lines is very easy, due to the invention of calculus some time later.
This event was notable enough in the history of calculus that it is memorialized on the following Albanian
postage stamp1.

Example 4.2. Consider the following implicit equation.

tan(x+ y) = sin(xy)

If you graph its solution curve, it is the following very complex picture (shown at two different levels of
zoom).

As you can see, there are many different functions that obey this implicit equation, because there are
many different values of y for a given value of x.

1I am not aware of any relation between Descartes and Albania, but I only spent a couple minutes googling for it.
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5 Implicit differentiation

Now we’ll look at how you can use an implicit equation to find derivatives. The basic technique will always
be as follows.

• Differentiate both sides of the implicit equation. Remember that y is a function of x.

• Use algebra to solve for dy
dx . The result will be an expression in x and y.

Let’s begin with a simple example.

Example 5.1. Consider the implicit equation of a circle.

x2 + y2 = 1

Now imagine that y is some function of x that obeys this implicit equation. We can differentiate both
sides of the equation with respect to x.

d

dx
(x2 + y2) =

d

dx
1

d

dx
x2 +

d

dx
y2 = 0

2x+ 2y · dy
dx

= 0 (chain rule)

2y
dy

dx
= −2x

dy

dx
= −2y

2x
dy

dx
= −y

x

This shows that the slope of the tangent line to the circle described by x2 + y2 = 1 is always given by
−y/x at a point (x, y).

Note. When you solve for dy
dx , it will almost always be an expression in terms of both x and y. In some

cases, you can re-express it as something purely in terms of x, but not always. The next example shows one
case where you can re-express it.

Example 5.2. Suppose that y = 3
√

cosx+ 7. Find dy
dx using implicit differentiation.

Note. You can differentiate this using the chain rule as well. Of course you will get the same answer as we
get below, but you may find one technique or the other easier.
Solution. Cube both sides to obtain y3 = cosx+ 7. Differentiate both sides:

d

dx
y3 =

d

dx
(cosx+ 7) (differentiate both sides)

3y2
dy

dx
= − sinx (chain rule on the left, known derivatives on the right)

dy

dx
= − sinx

3y2
(divide both sides by 3y2)

In this case, we have an explicitly equation for y, namely y = 3
√

cosx+ 7, so we can substitute that back
into the answer here to get the derivative purely in terms of x.
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dy

dx
= − sinx

3
(

3
√

cosx+ 7
)2

= − sinx

3 (cosx+ 7)
3/2

To summarize, there are two main reasons to differentiate implicit equations.

1. Because you have no explicit equation for y in terms of x (you can still obtain dy
dx in terms of x and y).

2. Because you have an explicit equation, but an implicit equation is much simpler (in this case, you can
substitute your explicit equation back at the end to get dy

dx purely in terms of x).

6 Examples

As examples of the technique of implicit differentiation, we will find some tangent lines to the two implicit
curves given in section 4.

Example 6.1. Consider the equation for Descartes’ leaf.

x3 + y3 = 6xy

1. Find the tangent line to this curve at the point (3, 3).

2. Find the tangent line to this curve at the point ( 4
3 ,

8
3 ).

Solution. Begin by differentiating both sides of the equation, as functions of x.

d

dx

(
x3 + y3

)
=

d

dx
(6xy)

3x2 + 3y2
dy

dx
= 6

dx

dx
y + 6x

dy

dx
(product rule used on the right side)

3x2 + 3y2
dy

dx
= 6y + 6x

dy

dx

3y2
dy

dx
− 6x

dy

dx
= 6y − 3x2 (move all the dy

dx to one side)

(3y2 − 6x)
dy

dx
= 6y − 3x2 (group like terms)

dy

dx
=

6y − 3x2

3y2 − 6x
(divide on both sides)

dy

dx
=

2y − x2

y2 − 2x
(cancel the factor of 3 on top and bottom)

Now, we can use this expression to compute the two desired tangent lines.

1. At the point (3, 3), the slope of the tangent line is dy
dx = 2·3−32

32−2·3 = −3
3 = −1. So the tangent line

is the line with slope −1 through the point (3, 3). Therefore this line is given by the equation

(y − 3) = (−1)(x− 3) , or alternatively y = −x+ 6.

2. At the point ( 4
3 ,

8
3 ), the slope of the tangent line is given by

2· 83−(
4
3 )

2

( 8
3 )

2−2· 43
. This simplifies to 16/3−16/9

64/9−8/3 =

48/9−16/9
64/9−24/9 = 32/9

50/9 = 32
40 = 4

5 . So the equation of the tangent line is (y − 8
3 ) = 4

5 (x− 4
3 ) , or if you

prefer, y = 4
5x+ 8

5 .
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The curve, with these two tangent lines, is shown below.

y = −x+ 6

y = 4
5x+ 8

5

(3, 3)
( 4
3 ,

8
3 )

Example 6.2. Consider the curve given by the following implicit equation.

tan(x+ y) = sin(xy)

Find the tangent line to this curve at the point (
√
π,−
√
π).

Solution. Begin by differentiating both sides of the equation. As usual, regard y as a function of x.

tan(x+ y) = sin(xy)

d

dx
tan(x+ y) =

d

dx
sin(xy)

sec2(x+ y)
d

dx
(x+ y) = cos(xy)

d

dx
(xy) (chain rule on both sides)

sec2(x+ y)

(
dx

dx
+
dy

dx

)
= cos(xy)

(
dx

dx
y + x

dy

dx

)
(product rule on the right)

sec2(x+ y)

(
1 +

dy

dx

)
= cos(xy)

(
y + x

dy

dx

)
(because

dx

dx
= 1)

So far so good. Now solve this whole monster for dy
dx .
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sec2(x+ y) + sec2(x+ y)
dy

dx
= y cos(xy) + x cos(xy)

dy

dx
(distributing terms)(

sec2(x+ y)− x cos(xy)
) dy
dx

= y cos(xy)− sec2(x+ y) (moving all the
dy

dx
to one side)

dy

dx
=

y cos(xy)− sec2(x+ y)

sec2(x+ y)− x cos(xy)
(divide on both sides)

To find the slope at the specific point (
√
π,−
√
π), just substitute the values of x and y into this expression.

Notice first of all that xy = −π and x+ y = 0; these occur in multiple places in the expression.

slope =
−
√
π cos(−π)− sec2(0)

sec2(0)−
√
π cos(−π)

=
−
√
π · (−1)− 1

1−
√
π · (−1)

=

√
π − 1√
π + 1

≈ 0.28

Therefore the equation of the tangent line is (y +
√
π) =

√
π − 1√
π + 1

· (x−
√
π) . In slope-intercept form,

this is y =

√
π − 1√
π + 1

x− 2π√
π + 1

. If you use a calculator to approximate all these numbers, you can also

write this equation as (y + 1.77) = 0.28 · (x− 1.77) or y = 0.28x− 2.27 (any of these four boxed answers

would be acceptable on homework). This line is shown on the plot below (Wolfram alpha has marked all
the points of intersection; the point (

√
π,−
√
π) is the second from the right, where the line is tangent to the

curve).
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