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1 Introduction

In this lecture, we apply the techniques from lecture 11 (maximizing and minimizing functions) to solve
so-called optimization problems. Essentially, this means we will be looking at word problems that can be
solved by maximizing or minimizing some function. These problems are solved in two stages: first you must
reformulate them as maximizing or minimizing some function, and second you must solve this maximization
or minimization problem (using the techniques we saw last week).

The reference for today is Stewart §4.6.

2 The basic strategy

I will first illustrate the sort of optimization problems we will solve with a relatively simple example, and
then state the basic strategy shown in this example.

Example 2.1. Suppose that a farmer wishes to construct a rectangular chicken pen using exactly 8 feet of
fence. What is the largest area that such a pen could enclose?
Solution. First, introduce two relevant variables: call h and w the two dimensions of the rectangular pen
(for height and width). So the area of the pen is hw. Now, h and w are related by an equation: the total
perimeter of the pen must be 8, and the pen has two sides of length w and two sides of length h. Therefore
2w+2h = 8; in other words w+h = 4. In fact, you can use this constraint to solve for one variable in terms
of the other: h = 4− w. So the area of the pen is (4− w)w. Note that w must be chosen between 0 and 4,
since neither side (h or 4−h) can have negative length. So the area of the pen must be (4−w)w, where w is
chosen from the interval [0, 4]. So we can use the closed interval method to find the maximum value of the
function A(w) = (4 − w)w on the interval [0, 4]. The derivative is A′(w) = 4− 2w, which is always defined,
and A′(w) = 0 if and only if 4 = 2w, i.e. w = 2. So there is a unique critical number of A(w), namely 2.
Checking this critical number and the two endpoints gives A(0) = 0, A(2) = 4, A(4) = 2. So the maximum
of these is the absolute maximum: A(2) = 4. Since the area of any chicken pen must be some value of A(w),
it follows that the area of the pen cannot be larger than 4. On the other hand, taking w = 2 (and therefore

h = 4−w = 2) gives a pen of the maximum area, which is a square pen with sides of length 2 and area 4 .

This example shows the basic strategy that we will always employ in these sorts of problems, which is as
follows.

1. Introduce variables for any relevant quantities in the problem. Write the quantity to be optimized in
terms of these variables.

2. Write down any constraints that must exist between the variables. Use this to solve for some of the
variables in terms of the others.

3. Write the quantity to be optimized as a function of a single variable (using the result of the previous
step), and determine the interval of possible inputs to this function.
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4. Find the maximum (or minimum) of this function on the interval you have determined, using methods
from lecture 11.

Note. There are many tricks that can be used to make these sorts of problems easier. Here are a couple;
we’ll see these illustrated in examples later.

• If there are several variables (related by constraints), try to work in terms of the one variables which
will make your work easiest (in the example above, it doesn’t matter if you work in terms of h or w,
but we’ll see other examples where one choice is much easier than another).

• Sometimes, if you want to optimize one quantity, it is easier to optimize its square (or some other
function of it). For example, it is usually easier to optimize the square of a distance than the distance
itself (we’ll see an example of this in the next section).

3 Examples

Here are a few more example problems, which can be solved using the differentiation techniques currently
at our disposal. In lecture 15 we’ll see some more examples using more differentiation techniques.

Example 3.1. Suppose now that the farmer wants to enclose exactly 10 square feet, and want to use the
minimum possible amount of fence. How much fence does he need? As before, he’ll be using a rectangular
pen.
Solution. As before, let h,w be the two dimensions of the pen. What makes this problem different from
before is that the constraint and the quantity to be optimized have switched places. The constraint is now
hw = 10 (the area must be 10), while the quantity to be optimized is the perimeter 2w + 2h. Now use
the constraint to solve for one variable: for example, we can write w = 10/h. Then the perimeter is now
P (h) = 2 · 10

h + 2h = 20

h + 2h. In this case, h could be anything in the interval (0,∞) (of course practically
speaking you would never make h anywhere near 0 or∞, but it turns out now to matter for the optimization).
Then P ′(h) = − 20

h2 + 2, which is defined for all positive h. So P ′(h) = 0 if and only if 2 = 20

h2 , i.e. h =
√
10.

So the function P (h) has a unique critical number, namely
√
10. Now, P ′′(w) = 40

h3 , which is always positive

(when h is positive), so P (h) is concave up on (0,∞); it follows that P (h) has a local minimum at h =
√
10,

and that this is also a global minimum (because the whole graph must lie above the tangent line at h =
√
10,

which is horizontal). So the minimum possible amount of fence needed is P (
√
10) = 20√

10
+ 2

√
10 = 4

√
10 .

This minimum is achieved by taking h =
√
10 and w = 10√

10
=

√
10; this is, the shape of the pen should be

a square.

Example 3.2. Suppose that you are constructing an aluminum can that must hole 500mL (i.e. its volume
must be 500mL). The can is shaped like a cylinder. So the cost of making this can is given by the surface
area (in cm2) of this cylinder times the price of aluminum per square centimeter. Therefore you’d like to
design the can to have the minimum possible surface area. What is this minimum possible surface area?
Solution. Begin by introducing the following variables: let r be the radius of the can, and h the height.
Then you an express the volume and surface area as follows1

Volume = πr2h

Surface area = 2πr2 + 2πrh

Let’s assume that r and h are measured in cm, so that surface area is measured in cm2 and volume is
measured in cm3 (or mL, which is the same thing).

1We certainly don’t expect you to know this surface area formula from memory, but it isn’t too difficult to obtain: just

divide the surface area into the two circles on top and bottom, each of area πr2, and the side, which has circumference 2πr and

height h, for area 2πrh.
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The constraint we know is that the volume of the can must be 500mL. That is, πr2h = 500. We should
solve for one of the variables. In this case, it is somewhat easier to solve for h, since we can avoid taking a
square root in this case: h = 500

πr2 . Then the volume can be expressed as the following function of r.

V (r) = 2πr2 +
1000

r

Here, r must be chosen to be positive, i.e. from the interval (0,∞). We can find the first two derivatives
of V using the power rule.

V ′(r) = 4πr − 1000

r2

V ′′(r) = 4π +
2000

r3

From the expression for V ′′(r), we see that the function is always concave up on the interval (0,∞),
meaning that any critical number gives a local minimum, which must in fact be a absolute minimum as well.

To find the critical value, solve the equation 0 = V ′(r), to obtain 4πr3 = 1000, or r = 3

√

500

π . This is the

unique critical value, so it gives the unique absolute minimum, which is V (r) = 2π
(

500

π

)2/3
+ 1000

3
√

500/π
. This

could be simplified further, but the simplification is not too illuminating: the approximate value is 349. So

the smallest possible surface area is ≈ 349cm2 , which is achieved for r ≈ 4.3cm and h ≈ 8.6cm.
By the way, one way to phrase the upshot of all the analysis above is: to minimize the surface area of

the can, you should choose the diameter of the base to be equal to the height. This is approximately true
for a standard 1 gallon paint can, which is 6 1

2
inches in diameter and 7 3

4
inches in height. Of course (as you

can readily see by thinking of other cans you’ve seen) other proportions are also common, reflecting the fact
that surface area is not always the most important feature to optimize. The optimal choice will depend on
many other factors.

Example 3.3. Find the minimal distance from the point (3, 4) to the line described by 4x+ 3y = 12.
Note. There are of course much better ways to solve this problem than using calculus; in particular it can be
solved by a bit of middle school geometry. But the problem here serves as an illustration of the techniques
we’re using; in particular, we will ask slightly different problems on the homework, where the same technique
described here (using calculus) will work, whereas an elementary calculation would be much more difficult.
In any case, if you can find the elementary method, I certainly encourage you to carry it out and then check
to make sure that it gives the same answer2.
Solution. Introduce variables x and y; let them be the coordinates of some point on the line. These are
related by the constraint 4x + 3y = 12, which you can solve to obtain y = 4 − 4

3
x. The quantity we wish

to optimize is the distance d from (x, y) to (3, 4). This can be computed by the standard distance formula
between two points in the plane (also known as the Pythagorean theorem).

2In fact, I solved this problem first with an elementary method, as a way of checking that I did the calculus correctly.
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d =
√

(3− x)2 + (4− y)2

=

√

9− 6x+ x2 + (4− (4− 4

3
x)2)

=

√

9− 6x+ x2 +

(

4

3
x

)2

=

√

9− 6x+

(

1 +
16

9

)

x2

=

√

9− 6x+
25

9
x2

At this point we are a little stuck with our current methods. However, a basic insight makes the problem
soluble (and even if we had more advanced methods, this trick would make the solution somewhat cleaner):
to find the minimum value of d, it suffices to just find the minimum value of d2 (since d is positive). And
that will be much easier, since d2 is just a polynomial in x. So let

f(x) = 9− 6x+
25

9
x2

and notice that d2 = f(x). So now we just need to minimize f(x), where x ranges over (−∞,∞). But
this is by now fairly routine.

f ′(x) = −6 +
50

9
x

f ′′(x) =
50

9

Since f ′′(x) is always positive, f is concave up, so any local minimum is an absolute minimum. The only
critical value is the solution of f ′(x) = 0, i.e. 50

9
x = 6; this solution is x = 27

25
. This minimum function value

is f(27
25
) = 9− 6 · 27

25
+ 25

9
· 27

2

252
= 144

25
.

Therefore, the minimum value of d2 is 144

25
; it follows that the minimum value of d is

√

144

25
= 12

5
= 2.4 .

This is the minimum distance from (3, 4) to the given line.
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