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1 Introduction

Now that we have spent some time discussing what exactly the derivative is, and how it is defined using
limits, we will discuss a couple of the main applications of the derivative. For now, we’ll limit ourselves to
fairly simple functions: those that can be differentiated using just the rules we saw in lecture 9 (the power
rule and the derivative of ex). Later, we’ll cover more versatile differentiation shortcuts and return to these
applications again.

The first application we consider is called linear approximation. The basic idea of linear approximation
is “local linearity:” this idea says that a tangent line to a function really lies quite close to the function, at
least near the point of tangency. Therefore it can serve as a very easily computed and conceptually simple
approximation of the original function.

The reference for today is Stewart §3.9.

2 Preliminaries

Recall the following three facts (the first two were discussed in lecture 9; the last one was discussed in
homework problem 3A− 5(ii)). These will be used extensively today.

• d
dxx

n = nxn−1, where n is any constant, whether positive or negative, whole number or not.

• d
dxe

x = ex.

• lim
x→0

sinx

x
= 1 (note that this is only true if x is the number of radians, not degrees).

The third of these facts amounts to saying that if f(x) = sinx, then f ′(0) = 1. Later we will see what
the derivative of sinx is everywhere; for now it will suffice just to know its value at 0.

3 Linear approximation

The simplest of all functions are linear functions – those functions whose graphs are straight lines. The idea
of linear approximation is that, when perfect accuracy is not needed, it is often very useful to approximate
a more complicated function by a linear function.

Definition 3.1. The linear approximation of a function f(x) around a value x = c is the following linear
function. Remember: c is a constant that you have chosen, so this is just a function of x.

L(x) = f(c) + f ′(c) · (x− c)

The graph of this function is precisely the same as the tangent line to the curve y = f(x). The function
L(x) is the unique linear function that satisfies L(c) = f(c) and L′(c) = f ′(c). Sometimes we say that it
“matches the function f(x) to first order” for this reason.
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Example 3.2. Physicists often use the approximation sinx ≈ x. This approximation is particularly useful
in optics, where an important relationship (Snell’s law) becomes vastly simplified if you replace sinx with x
wherever it appears. This simplification allow relatively easy computation of how curved a lens should be to
achieve a certain magnification (for example).

This approximation is nothing but the linear approximation of the function f(x) = sinx around the value
c = 0. You can see this as follows:

f(0) = sin 0

= 0

f ′(0) = lim
h→0

sin(h)− sin 0

h

= lim
h→0

sinh

h
= 1

L(x) = f(0) + f ′(0) · (x− 0))

= x

The last inequality in computing f ′(0) is simply the fact we mentioned in the preliminaries: that the ratio
of sinx to x goes to 1 as x goes to 0.

In the case of sinx ≈ x, the linear approximation is useful because it vastly simplifies other calculations.
Another use for linear approximation is to calculate unknown values of a function given known values.

The linear approximation is useful if you can calculate f(c) and f ′(c) exactly (or estimate them well),
but you don’t know how to calculate nearby values of the function. This is sometimes useful for quick mental
approximations; it is also a basic technique that underlies how computers actually go about computing values
of functions like square roots.

Example 3.3. Estimate
√

26 using a linear approximation.
Solution. Let f(x) =

√
x. Then we wish to approximation f(26). To do this, look for a nearby input to

this function that we can compute easily: f(25) =
√

25 = 5. To do a linear approximation, we also need to
know the value of the derivative of f at 25. But we can do this, too, using the power rule for differentiation.

f(x) =
√
x

= x1/2

f ′(x) =
1

2
x

1
2−1

=
1

2
x−1/2

=
1

2
√
x

⇒ f ′(25) =
1

2 · 5

=
1

10

Therefore the linear approximation of
√
x around x = c is the following function.

L(x) = f(25) + f ′(25)(x− 25)

= 5 +
1

10
(x− 25)
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To approximate
√

26, just plug x = 26 into this function to obtain
√

26 ≈ 5 + 1
10 (26− 25) = 5 + 1

10 = 5.1.
Indeed, 5.1 is very close to the actual square root of 26; its square is 26.01, in fact.

4 Examples

We will now use linear approximation around a suitable value x = c to estimate the following numbers.

1. e0.017

2.
12

1.02

3.
3
√

9

4.
√

50

5. sin(1.8◦) Remember: 1.8◦ (that is, 1.8 degrees) is not the same thing as 1.8 radians.

6. f(5), where f(x) is the function f(x) =
x+ 200√

x
.

The steps for each example are the same: identify a function f(x) such that the desired quantity is some
value, but there is a nearby value that is easy to compute. Then determine the linear approximation function
and substitute the desired value of x. These steps will be shown in parallel for the six examples.

Desired quantity e0.017 12
1.02

3
√

9
√

50 sin(1.8◦) 5+200√
5

f(x) ex 12
x

3
√
x

√
x sinx x+200√

x

= 12x−1 = x1/3 = x1/2 = x1/2 + 200x−1/2

f ′(x) ex −12x−2 1
3x
−2/3 1

2x
−1/2 ? 1

2x
−1/2 − 100x−3/2

center c 0 1 8 49 0 4
f(c) 1 12 2 7 0 102
f ′(c) 1 −12 1

12
1
14 1 1

4 −
100
8

= − 49
4

L(x) 1 + x 12− 12(x− 1) 2 + 1
12 (x− 8) 7 + 1

14 (x− 49) x 102− 49
4 (x− 4)

Now that we have a linear approximation function suitable to approximate each desired quantity, we can
approximation them as follows. Note that the function L(x) used in each item below is different; it is the
function found in the table above. I’ve also noted the “true” value, to enough decimal places to see where
it starts to differ from the the value computed by linear approximation.

1. e0.017 ≈ L(0.017) = 1 + 0.017 = 1.017. The true is 1.0174 (to four decimal places).

2. 12
1.02 ≈ L(1.02) = 12− 12 · 0.02 = 11.76. The true value is 11.765 (to three decimal places).

3. 3
√

9 ≈ L(9) = 2 + 1
12 · 1 = 2 1

12 ≈ 2.083. The true value is 2.080 (to three decimal places).

4.
√

50 ≈ 7 + 1
14 · 1 ≈ 7.0714. The true value is 70.0710 (to four decimal places).

5. To compute sin(1.8◦), we should first convert 1.8◦ to radians, since otherwise our value for the derivative
of sinx at 0 (and thus our linear approximation) is wrong. There are 2π radians in 360◦, so 1.8 degrees is
equal to 1.8 · 2π360 = π

100 radians. To approximate sin 1.8◦, use the linear approximation sinx ≈ L(x) = x
(where x is in radians) to obtain sin(1.8◦) ≈ π

100 ≈ 0.031415. The true value is 0.031410 (to six decimal
places).

6. f(5) ≈ L(5) = 102− 49
4 · 1 = 893

4 = 89.75. The true value is 91.7 (to one decimal place).
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5 Over or under estimate?

Recall that one way to describe a concave up function is that it lies above its tangent line. So the concavity
of a function can tell you whether the linear approximation will be an overestimate or an underestimate.

1. If f(x) is concave up in some interval around x = c, then L(x) underestimates in this interval.

2. If f(x) is concave down in some interval around x = c, then L(x) overestimates in this interval.

Remember that an easy way to determine concavity is to evaluate the second derivative. For example,
consider the six examples from the previous section.

1. If f(x) = ex, then f ′′(x) = ex, which is always positive, so f(x) is concave up. So L(0.017) = 1.017 is
an underestimate of e0.017.

2. If f(x) = 12/x, then f ′′(x) = 24x−3, which is positive for all positive x, so f(x) is concave up for
positive x. So L(1.02) = 11.76 is an overestimate of 12/1.02.

3. If f(x) = 3
√
x, then f ′′(x) = − 2

9x
−5/3, which negative for positive x, so f(x) is concave down for

positive x. So L(9) = 2 1
12 is an overestimate of 3

√
9.

4. If f(x) =
√
x, then f ′′(x) = − 1

4x
−3/2, which is negative for positive x, so f(x) is concave down for

positive x. So L(50) = 7 1
14 is an overestimate of

√
50.

5. If f(x) = sinx, then we don’t yet know how to compute f ′′(x). So we can’t yet conclude anything
about whether sinx ≈ x gives an over or under estimate.

6. If f(x) = x+200√
x

then f ′′(x) = − 1
4x
−3/2+150x−5/2. At c = 4, f ′′(c) = − 1

4
1
8 +150 1

32 = − 1
32 + 150

32 = 149
32 .

So around c = 4, the linear approximation is an underestimate (the function is concave up). Indeed,
L(5) = 89.75 is an underestimate of f(5).

6 Appendix: A limit expression for the number e

As we’ve said, basing all exponential functions on the natural exponential function f(x) = ex is like using the
metric system: it makes a lot of conversion easier. One way in which ex is fairly natural is that it has a very
simple linear approximation around x = 0: since f(0) = f ′(0) = 1, the linear approximation is ex ≈ 1 + x.

This linear approximation (like all linear approximations) gets better and better the the closer x is to 0.
This fact turns out to provide one way of writing down a precise definition of Euler’s number e. Indeed, we
have the following estimate for the nth roots of e, for all n.

n
√
e = e1/n ≈ 1 +

1

n
Taking nth powers of both sides, this gives

e ≈
(

1 +
1

n

)n
Note that since ex is concave up, we know that this is always an underestimate.
This approximation gets better and better the larger n becomes. So the “ideal” value, as n grows

arbitrarily large, is just Euler’s number e. The precise statement, which you may have seen in precalculus,
is the following.

e = lim
n→∞

(
1 +

1

n

)n
There are many other definitions of e, and of course they are all equivalent; I mention this one now since

it comes from the current topic of linear approximation in a natural way.
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