\[\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}} \text{ converges?} \]

Know \[\sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges} \]

 III. 3. 14

Recap:

\[\sum_{n=a}^{\infty} C_n \rightarrow \text{does this converge?} \]

Integral test

\[\sum_{n=1}^{\infty} \frac{1}{n^p} \]

\[\text{converge if } p > 1 \]

\[\text{diverge if } p \leq 1 \]

aka \(p \)-series

Comparison test

\[\sum_{n=1}^{\infty} \frac{1}{n^{1.1}} \text{ converges} \rightarrow \text{yes because } 0 < \frac{1}{n^{2.1}} < \frac{1}{n^2} \]

and \[\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges} \]

\[\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}} \]

Compare to \[\sum_{n=1}^{\infty} \frac{1}{n} \text{ which diverges} \]

but \[\frac{1}{n} \neq \frac{1}{n+\sqrt{n}} \]

Note that \(\sqrt{n} < n \) (if \(n > 1 \))

\[n + \sqrt{n} \leq 2n \]

\[\frac{1}{n+\sqrt{n}} > \frac{1}{2n} \]

So \[0 < \frac{1}{2n} < \frac{1}{n+\sqrt{n}} \]

and \[\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges} \]

So \[\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}} \text{ diverges} \]