A SEPARABLE DIFFERENTIAL EQUATIONS

\[f'(x) = 3x^2 \]

Integrate: \[\int f'(x) \, dx = \int 3x^2 \, dx \Rightarrow f(x) = x^3 + C \] (General Solution)

Introduces constant! (it is important now)

\[f'(x) = 3f(x) \Rightarrow f'(x) - 3f(x) = 0 \Rightarrow A - 3 = 0 \Rightarrow A = 3 \]

Linear solution of characteristic equation is \(A = 3 \)

\(\Rightarrow \) ONE solution \(e^{3x} \) because: 1st order, linear

General solution: \(f(x) = Ce^{3x} \)

Another Method:

\[\frac{f'(x)}{f(x)} = 3 \]

Integrate: \[\int \frac{f'(x)}{f(x)} \, dx = \int 3 \, dx \Rightarrow \]

\[\left\{ \begin{array}{l}
 u = f(x) \\
 du = f'(x) \, dx
\end{array} \right. \quad \int \frac{du}{u} = 3x + C \Rightarrow \]

\[\ln |u| + D = 3x + C \Rightarrow \]

\[\ln |f(x)| = 3x + C - D \Rightarrow \text{doesn't add anything new since both } C, D \text{ are arbitrary} \]

\[\ln |f(x)| = 3x + C \Rightarrow \]

\[|f(x)| = e^{3x + C} \Rightarrow \]

\[f(x) = \pm (e^{3x} \cdot e^C) \Rightarrow \]

\[f(x) = C_e^{3x} \text{ any arbitrary constant} \]
\[f'(t) = -\frac{t}{f(t)} \]

- **Separate**: \[f(t) \cdot f'(t) = -t \] (i.e., move \(f(t) \) to the left)

- **Integrate**: \[\int f(t) \cdot f'(t) \, dt = -\int t \, dt \]
 \[
 \begin{aligned}
 u &= f(t) \\
 du &= f'(t) \, dt
 \end{aligned}
 \]
 \[
 \frac{1}{2} f(t)^2 + C = -\frac{1}{2} t^2 + C
 \]

- **Solve**: \[f(t)^2 = -t^2 + C \Rightarrow f(t) = \pm \sqrt{C - t^2} \]

 or simply \(C \)

 (it is just as arbitrary)

I.V.P.:
\[\begin{aligned}
 f'(t) &= -\frac{t}{f(t)} \\
 f(0) &= 3
 \end{aligned} \]

- **Solve**: \[3 = f(0) = \pm \sqrt{C - 0^2} \Rightarrow \pm \sqrt{C} = 3 \]

 Initial data tells that the "\(\pm \)" sign is actually a "+" sign, and that \(C = 9 \)

 Therefore \[f(t) = \sqrt{9 - t^2} \]

I.V.P.:
\[f(0) = -3 \] then \(f(t) = -\sqrt{9 - t^2} \)
Differential Notation:

For the same problem \(\frac{df}{dt} = -\frac{t}{f} \)

\[
\begin{array}{c}
\text{df for } f'(t) \\
\frac{df}{dt}
\end{array}
\quad\begin{array}{c}
f for f(t)
\end{array}
\]

Separate \(df \) and \(dt \) as well

\[
\int df = -\int t dt \implies \int f df = -\int t dt \implies
\]

\[
\frac{1}{2} f^2 = -\frac{1}{2} t^2 + C \quad \text{(then solve as before)}
\]

eg. \(\frac{dy}{dx} = \frac{2y}{x} \)

Separate + Integrate: \(\int \frac{1}{y} dy = \int \frac{2}{x} dx \implies \)

\[
\ln |y| = 2\ln |x| + C \implies
\]

\[
\ln |y| = \ln (x^2 \cdot e^C) \implies
\]

\[
|y| = e^C \cdot x^2 \implies
\]

Solve for \(y \):

\[
y = \pm e^C \cdot x^2
\]

\(y = C \cdot x^2 \quad \text{(General Solution)} \)

e.g. Newton’s Law of Cooling

\(T(s) = \text{temperature of a metal rod after } s \text{ seconds} \)

Law of Cooling: \(T'(s) = k \cdot (A - T(s)) \)

\(\text{ambient temperature} \quad \text{of the room} \)
\(\text{dependant on} \quad \text{the rod} \)
\[\text{Rate of cooling/heating is directly proportional to the} \]
\[\text{temperature difference} \]

- Separate: \[\frac{T'(s)}{A - T(s)} = K \]

- Integrate: \[\int \frac{T'(s)}{A - T(s)} \, ds = \int K \, ds \Rightarrow \begin{cases} u = T(s) \\ du = T'(s) \, ds \end{cases} \]

\[\Rightarrow -\ln|A - T(s)| = ks + C \Rightarrow \]

\[\Rightarrow \ln|A - T(s)| = -ks - C \Rightarrow \]

\[\Rightarrow A - T(s) = \pm e^{-ks} - C \Rightarrow \]

\[\Rightarrow A - T(s) = (\pm e^{-c}) \cdot e^{-ks} \Rightarrow \]

\[T(s) = A - C \cdot e^{-ks} \Rightarrow \]

ambient \(T \) dependant on type of rod

dependant on

initial temperature