INTEGRATION BY PARTS

\[\frac{d}{dx}(x \cdot e^{2x}) = 1 \cdot e^{2x} + 2x \cdot e^{2x} \rightarrow \text{product rule} \]

\[\Rightarrow \int (e^{2x} + 2xe^{2x}) \, dx = x \cdot e^{2x} + c \]

\[\Rightarrow \int xe^{2x} \, dx \]

\[u = x, \quad dv = e^{2x} \]
\[du = dx, \quad v = \frac{1}{2} e^{2x} \]

\[\int xe^{2x} \, dx = \frac{1}{2} xe^{2x} - \frac{1}{2} \int e^{2x} \, dx \]

\[= \frac{1}{2} xe^{2x} - \frac{1}{4} e^{2x} + C \]

\[\text{Formula: } \int u(x)v'(x) \, dx = u(x)v(x) - \int u'(x)v(x) \, dx \]

\[= \int u \, dv = uv - \int v \, du \]

\[\Rightarrow \int x \cos x \, dx \]

\[u = x, \quad dv = \cos x \]
\[du = dx, \quad v = \sin x \]

\[\int x \cos x \, dx = x \sin x - \int \sin x \, dx \]

\[x \sin x + C \]

\[\int e^{3x} \sin(3x) \, dx \]

\[u = 3 \cos 3x, \quad dv = e^{3x} \]
\[du = -9 \sin 3x \, dx, \quad v = \frac{1}{3} e^{3x} \]

\[\int e^{3x} \sin(3x) \, dx = \frac{1}{9} \left(2e^{3x} \sin 3x - 36 \int e^{3x} \sin(3x) \, dx \right) \]

\[\Rightarrow \int e^{3x} \sin 3x \, dx = \frac{1}{37} \left(2e^{3x} \sin 3x - 12e^{3x} \cos 3x \right) \]
Order of preference for what is "u"

\[L \rightarrow \text{logarithms} \]
\[I \rightarrow \text{inverse trig functions} \]
\[A \rightarrow \text{algebraic functions (} x, x^n, \frac{1}{x}, \sqrt{x} \text{)} \]
\[T \rightarrow \text{trig functions} \]
\[E \rightarrow \text{exponentials} \]

\[\text{Inverse trig.} \]
\[\int \tan^{-1} x \, dx \]
\[u = \tan^{-1} x \quad dv = dx \]
\[du = \frac{1}{1+x^2} \quad v = x \]

\[\left[x \tan^{-1} x \right]_0^1 - \int_0^1 x \cdot \frac{1}{1+x^2} \, dx \]
\[\left[x \tan^{-1} x \right]_0^1 - \int_0^1 \frac{x}{1+x^2} \, dx \]
\[\frac{\pi}{4} - \frac{1}{2} \left[\ln |1| \right]^2 \]
\[\frac{\pi}{4} - \frac{1}{2} \ln 2 \]

\[u = 1 + x^2 \quad du = 2x \, dx \]
\[x \, dx = \frac{1}{2} \, du \]

new boundaries
\[1 + x^2 \rightarrow 1, 2 \]

\[\int \sin^m x \cos^n x \, dx \]

Two tactics \(u \) substitution

- \(u = \sin x \) or \(u = \cos x \)
- \(\sin^2 x + \cos^2 x = 1 \)
- \(\sin^2 x = \frac{1}{2} (1 - \cos 2x) \)
- \(\cos^2 x = \frac{1}{2} (1 + \cos 2x) \)

\[\int \sin^2 x \, dx \rightarrow \int \frac{1}{2} (1 - \cos 2x) \, dx \]