All exercise numbers from the textbook refer to the second edition.

2. Exercise 6.2 (Note: the notation $P \oplus Q$ means the same thing as $P \oplus (\ominus Q)$, and the notation $2P$ means the same thing as $P \oplus P$).

3. Exercise 6.5, parts (a) and (b) (Hint. You can save some time by making two lists in advance: values of y^2 for various y and values of $x^3 + Ax + B$ for various values of x, then checking for numbers occurring in both lists).

4. Exercise 6.6, parts (a) and (b).

5. Exercise 6.7.

Programming problems

Full formulation and submission: https://www.hackerrank.com/m158-2016-pset-8

8. Given a prime p, an elliptic curve over \mathbb{F}_p and two points on the curve, compute the sum of the two points.

9. Given a prime p, an elliptic curve over \mathbb{F}_p, a point P on the curve and an integer n (up to 64 bits), compute the point $n \cdot P$ on the elliptic curve (you will want to implement the double-and-add algorithm, or something similar).

10. Given a prime p, an elliptic curve over \mathbb{F}_p of order q (where q is provided for you), and two points P, Q on the curve, find the smallest positive integer n such that $n \cdot P = Q$ (i.e. solve the elliptic curve discrete logarithm problem). The value of p will be up to 28 bits long, so trial and error is unlikely to solve all of the test cases; you will most likely want to adapt the BSGS algorithm to the setting of elliptic curves.

11. Devise a method to create “blind forgeries” for a given DSA public key. That is, given p, g and A as in DSA, generate integers S_1, S_2, and D such that (S_1, S_2) is a valid signature for D. You will likely want to adapt the strategy of exercise 4.7 from Elgamal to DSA. Your method should be non-deterministic; the grading script will give the same test case multiple times to check that the same answer is not returned each time.