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Abstract

A tropical curve is a graph with specified edge lengths, some of which may be infinite.
Various facts and attributes about algebraic curves have analogs for tropical curves. In this
article, we focus on divisors and linear series, and prove the Riemann-Roch formula for divisors
on tropical curves. We describe two ways in which algebraic curves may be transformed into
tropical curves: by aboemas and by specialization on arithmetic surfaces. We discuss how the
study of linear series on tropical curves can be used to obtain results about linear series on
algebraic curves, and summarize several recent applications.
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1 Introduction

The origins of tropical geometry lie in the study of tropical algebra, whose basic object is the set
R ∪ {−∞} equipped with the operations x ⊕ y = max(x, y) and x ⊗ y = x + y. This is the so-
called tropical semifield. Tropical algebra may be regarded as an idealization of ordinary algebra
composed with the logarithm map, insofar as log(x · y) = log x⊗ log y and log(x+ y) ≈ log x⊕ log y
for values of x and y that are sufficiently far apart. Due to the fact that x ⊕ x = x, the term
“idempotent algebra” is sometimes used. Such semirings were originally studied by Imre Simon of
Brazil. The appellation “tropical” arose apparently because French computer scientists believed
that it would flatter Mr. Simon.

Although tropical mathematics in a broad sense has been studied for over two decades, it has
recently seen enormous growth in its connections to algebraic geometry, and especially algebraic
curves. Polynomials over the tropical semiring are piecewise-linear functions with integer slopes,
hence their graphs form convex polyhedral complexes. These complexes bear many strong analogies
to algebraic varieties. Along the lines of the tropical-logarithmic analogy made above, tropical
geometry studies what happens to algebraic geometry after catastrophic deformations of complex
structure. In order to make such analogies more precise, the notion of a tropical variety has
recently been introduced; the notion of a tropical curve is somewhat older. An indication of the
recent growth of the field is that as recently as 2005, there was no satisfactory definition of tropical
varieties in all dimensions ([11]).

This article is meant as an introduction to some basic topics about tropical curves, although we
sometimes indicate how the situation should be generalized to higher-dimensional tropical varieties.
We do this in order to maintain simplicity of notation and to preserve as much geometric intuition
as possible. We will focus on the notion of divisors and linear series on tropical curves. Our
approach in this article is to avoid, as much as possible, discussion of the tropical semifield and
tropical algebra, and to instead phrase our statements in terms of piecewise-linear maps. We hope
that this will minimize the confusion associated between keeping the distinction between classical
and tropical arithmetic straight, while still allowing us to cover nontrivial content and applications.

We shall examine two methods to converting curves to tropical curves: amoebas and special-
ization via arithmetic surfaces. Amoebas are the result of applying the logarithm map to all
coordinates of an algebraic variety, and then deforming the variety to shrink the image onto a poly-
hedral skeleton; we indicate how this can be understood and formalized for curves. Specialization
uses techniques from scheme theory to degenerate a smooth curve into a graph. In section 2 we
describe these two methods informally. In sections 5 and 6, we elaborate on these two methods,
and discussion a recent application of each to classical geometry: section 5.6 discusses the work
of Mikhalkin [19] on the computation via tropical geometry of Gromov-Witten and Welschinger
invariants, and section 6.3 discusses a recent tropical proof of the classical Brill-Noether theorem,
by Cools, Draisma, Payne, and Robeva [8]. Sections 3 and 4 formulate the notions of abstract trop-
ical curves and linear series on them, so that we may draw on these notions in the following two
sections. The capstone of section 4 is the tropical Riemann-Roch theorem, which is a compelling
testament to the analogy between the tropical and classical worlds. We also believe that its proof
sheds light on the principles behind the classical Riemann-Roch theorem.

An excellent survey of tropical curves (although now outdated) is [11]. For definitions of tropical
varieties in arbitrary dimension, as well as a notion of tropical schemes, see Mikhalkin’s paper [21]
and book in progress [20]. An illuminating, if rather technical, introduction to tropical geometry via
toric schemes, with particular attention to tropical intersection theory, is [16]. A delightful paper
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Figure 1: Plane curves of degrees 1, 2 and 3 under the Log map.

that highlights the analogy between Riemann surfaces and finite graphs, with many charming
combinatorial implications, is [4]. For more careful discussion of the polyhedral aspects of the
subject, computational aspects and the development of so-called tropical grassmannians, consult
[25], [26], [27], or [28]. Other references to topics specific to individual sections are distributed
throughout this article.

2 From curves to graphs

Before defining abstract tropical curves in section 3, we describe how graphs arise from degeneration
of curves, in order to motivate which features must be brought out in tropical curves, and which
properties of algebraic curves we might expect to carry over to them.

2.1 Amoebas of plane curves

We begin informally by describing in vague terms some intuition behind the definitions of tropical
geometry. We will become more precise in the next subsection, where we describe a suitable
formalism for the intuitive content of this subsection.

Suppose that C is a general algebraic curve given by a degree d polynomial in (C∗)2 (or in any
compactification thereof). Then C may be mapped into R2 by applying the map Log : (x, y) 7→
(log |x|, log |y|). This map splatters the curve onto the plane; the result is called the amoeba of the
curve. Figure 2.1 illustrates the effect of the Log map on plane curves of degree 1, 2, and 3.

Several features of these amoebas are immediately apparent. First, they appear to have the
same number of holes as the original curve. Second, far away from the origin, the amoebas consist
of three sets of long, straight tentacles: one set pointing in each of the directions west, south,
and northeast, and each set containing d tentacles (where d is the degree of the curve). As the
reader can verify, these should be expected to exist as the manifestation of points where one of the
coordinates approaches either 0 or ∞. Third, near the center of the picture, the amoeba seems to
cling to a skeleton of sorts. Our objective is to uncover this skeleton, which we shall refer to as a
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tropical curve, and understand how properties of the original curve correspond to properties of the
skeleton.

To achieve this, we consider not just a single curve, but a family of curves parameterized by
t, which will shrink to 0. We could like to choose this family in such a way that the amoeba is
neatly shrinkwrapped onto the underlying skeleton as t goes to 0. The following section indicates
an effective way to formalize this idea.

2.2 Curves over the field of Puiseux series

Suppose that pt(x, y) is a family of polynomials in x, y, for t in some neighborhood of 0. Then
the coefficients of pt are analytic functions of t, i.e. convergent power series. Disregarding the
convergence of this power series, we have simply a curve defined over the ring C[[t]]. We wish to
understand the image of this curve under the Log map, and how it specializes as t goes to 0. The
following lemma is very useful.

Lemma 2.1. Let R = C[[t]] and K = C((t)) be the field of fractions of R. Then every field
extension K ′ of K is obtained by adjoining a kth root of t for some k, and the integral closure of
R in such an extension is R′ = C[[t1/k]].

Proof. See [10], corollary 13.15.

This suggests the following definition.

Definition 2.2. The field of Puiseux series, which we denote K, is given by

K =
⋃
k≥1

C((t1/k)),

where the union is taken in an algebraic closure of C((t)). For any x ∈ K∗, we denote by val(x)
the smallest exponent of t occurring in x.

By lemma 2.1, the field K is in fact algebraically closed. The map val is well-defined since all
the exponents of terms in a given series x ∈ K have bounded denominator and are bounded below.
Because the field K is algebraically closed and has characteristic zero, theorems over K almost
always suffice to prove theorems over C.

Returning to our original situation: a curve defined over the ring C[[t]] gives rise to a curve over
the algebraically closed field K. Suppose that this curve lies in A2

K, and is given by coordinates
(x(t), y(t)), where x, y are Puiseux series. Then supposing for then moment that both x and y are
convergent power series, consider their image under the Log map. As t goes to 0, the result will
increasingly be dominated by the term of lowest exponent; hence the result will be approximately
(val(x) log |t|, val(y) log |t|). As t approaches 0, log |t| will become a very large negative number.
Thus we should scale by (− log |t|) in order to prevent this expansion. Alternatively, we should take
the logarithm with respect to 1/|t|. This now suggests that the following definition as the correct
abstract notion for “the limit of amoebas.”

Definition 2.3. Let C be a curve in (K∗)2. The non-archimedean amoeba of C is the closure in
R2 of the image of C under the map (x, y) 7→ (−val(x),−val(y)).
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Observe that if p(x, y) is a polynomial with coefficients in K, then if it is equal to 0, then
two of its monomials must be equal, and both have minimal valuation among all the monomials
(otherwise, the valuation of p(x, y) would be equal to the lowest valuation of a monomial). In fact,
we have the following theorem, originally proved by Kapranov. A proof can be found in [9].

Theorem 2.4. Let p(x, y) =
∑

i,j ci,jx
iyj be a polynomial, defining a curve C in (K∗)2. Then

the non-archimedean amoeba of C is precisely the closure of the set of points (u, v) ∈ R2 where
max{−val(ci,j) + iu+ jv} is achieved more than once; in other words, it is the set of points where
this function is not differentiable.

One inclusion follows from the remarks before the theorem statement. The other follows from
a suitable application of Hensel’s lemma, although we do not wish to dwell on the details here. See
section 5.5 for a related argument that suggests the proof.

The non-archimedean amoeba of a plane curve defined over K gives one way to associate a
graph, in this case embedded in R2, to such a curve. We now consider another construction, which
considers not the limit of the amoeba as t goes to 0, but instead the limit of the curve. This
notion does not work for all curves C, but can still be used to prove nontrivial theorems for curves
defined over algebraically closed fields of any characteristic, one example of which we will describe
in section 6.

2.3 Specialization

A second method for converting curves into graphs, discussed by Baker in [2] and applied to
algebraic curves over fields of any characteristic in [8], is by specialization on an arithmetic surface.
Although this method is different in nature from the amoeba approach of the previous subsection,
there is a deep connection between the two methods of converting curves to graphs, which is
elaborated in [24].

This method is based on the idea of specialization, which is described in section II.8 of [20].
This section, and section 6, which builds upon it, depend on various aspects of scheme theory that
will not be used elsewhere in this article.

As in the previous section, suppose that C is a curve defined over the field K of Puiseux series.
Such a curve can be defined over some extension of the field of formal Laurent series, and by lemma
2.1, it suffices to take this extension to be C((t)) itself, by replacing t1/k by t. Since this is the
field of fractions of the complete discrete valuation ring C[[t]], we can study such curves in terms
of arithmetic surfaces.

Definition 2.5. Let R be a complete discrete valuation ring, with field of fractions K and alge-
braically closed residue field k. An arithmetic surface is a proper flat scheme X over SpecR, whose
generic fiber is a smooth curve C over K. Such an arithmetic surface is called a model for C.

For a given curve C, there may exist more than one model for C. If C is meant to describe a
family of curves, then the limit as t goes to 0 should be precisely the special fiber Xk of this family,
which will be a one-dimensional scheme over k. There are several convenient attributes the special
fiber may have.

Definition 2.6. A model X for a curve C is called semistable if the special fiber Xk is a reduced
scheme over k with only simple double points as singularities. The model X is called strongly
semistable if each irreducible component of Xk is smooth, and X is called totally degenerate if each
irreducible component of Xk is a genus 0 curve.
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Figure 2: A smooth plane quartic curve X (over K), its special fiber Xk (over C), and the corre-
sponding dual graph G.

A semistable model X for the curve C gives rise to a graph, as follows. Notice that the model
is strongly semistable if and only if the resulting graph has no loop edges.

Definition 2.7. The dual graph of the special fiber of a semistable model X for C is a multigraph
whose vertices correspond to the irreducible components of Xk, and whose edges correspond to the
double points of Xk and connect the two components involved.

Example 2.8 (Adapted from [2]). Let R be the ring C[[t]]. Consider the arithmetic surface X′ in P2
R

given by the homogenous quartic polynomial p(X,Y, Z) = (X2−2Y 2 +Z2)(X2−Z2) + tY 3Z. The
generic fiber may be regarded as a smooth quartic plane curve C over K. By the genus formula,
C has genus

(
4−1

2

)
= 3. This scheme is not regular, but blowing up the point [0, 1, 0] in the special

fiber results in an arithmetic surface X with generic fiber C. The special fiber Xk consists of a
plane conic Q meeting each of two lines L1, L2 in two points, and the exceptional divisor, a genus
0 curve meeting each the lines L1, L2 in one point each. The result is shown in figure 2, along with
the dual graph, G. Observe that G has 3 loops; the genus of G (as defined in section 3) is equal
to the genus of C. We will see in section 6.2 that this is always the case for a totally degenerate
strongly semistable model.

Point on the curve C can be associated to points on the special fiber Xk via the specialization
map, which will be discussed in section 6. If X sits in Pn

R, then this map is the specialization map
described in [20].

One strength of the specialization approach is that it can be used to prove results that are valid
in all characteristics, as we will see is section 6.

The specialization approach is particularly well-suited to problems concerning the dimensions
of linear series on the curve C. Linear series on C specialize to linear series on the graph G, and
ranks of linear series do not decrease under specialization (this is the content of the specialization
lemma 6.1). Before describing these topics, we must describe abstract tropical curves and linear
series on them, to provide the necessary vocabulary and technique.

3 Metric graphs and tropical curves

Just as smooth manifolds are topological spaces composed of euclidean neighborhoods glued by
smooth maps, tropical varieties are topological spaces composed of neighborhoods that appear
as polyhedral cones, glued by continuous piecewise affine linear maps with integer slope. The
requirement that the maps have integer slopes (rather than simply being piecewise linear) is critical,
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Figure 3: Subdivision is not regarded as changing the metric graph Γ.

Figure 4: A tropical curve.

and derives from the fact that we are meant to regard maps of tropical varieties as the image under
a logarithmic map of maps of algebraic varieties. Monomials, naturally, have integer exponents.
In this article, we are not concerned with general tropical varieties, but will instead only develop
the case of tropical curves. We begin with an informal discussion before presenting a more careful
definition.

Abstract tropical curves are a mild generalization of metric graphs. Intuitively, a metric graph
is simply a finite graph together with edge lengths in R+. Two such graphs are regarded as the
same if they give the same metric space; for example, splitting an edge into two edges whose lengths
sum to the original length is not considered to change the metric graph.

A metric graph can be specified by a finite multigraph, possibly with loop edges, with assigned
edge lengths. However, it is never necessary to include loops or multiple edges, since these can
always be subdivided to produce a simple graph (see figure 3).

A tropical curve differs from a metric graph in that it allows the presence of infinite edges, so
long as they lead to leaves (see figure 4). Some care is needed here in order to carefully define an
infinite edge: the author prefers to conceive of an infinite edge as the one-point compactification
of the interval [0,∞), where we regard this not just as a topological space but as almost a metric
space (where the distance from any point to ∞ is infinite). Although this has the same topology
as [0, 1], the metric structure is different, insofar as there is a point with no metric neighborhoods.
Thus infinite edges are asymmetric; it is the end at infinity that we require to be a leaf of the graph.

Several remarks are in order on the principle behind this definition. We wish to allow infinite
edges on tropical curves in order to describe the behavior of the tentacles described in section 2.1,
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but clearly there can be no more combinatorial structure at the “other end” of such a tentacle.
We might consider representing these edges as open intervals, however compactifying the space by
adjoining vertices at infinity is convenient for a number of reasons. It constrains the definition
of “piecewise linear” functions (which shall become important momentarily) to those with finitely
many pieces. More importantly for our purposes, we shall see in section 4 that this convention
allows the divisor of a rational function to be supported in part at infinity, which is necessary
in order for the degree of this divisor to be zero. As for the fundamental asymmetry of infinite
edges, this simply arises from the fact that in tropical geometry (in contrast to classical projective
geometry), points at infinity are qualitatively different from finite points.

We shall now present a more precise definition of the notions above, along with a notion of a
rational and regular functions on a tropical curve.

Definition 3.1. A tropical edge E is a topological space together with an identifictation (i.e. a
homeomorphism) with [0, `], for some ` ∈ (0,∞]. A finite point on E is any point other than ∞.
The vertices of E are 0 and `.

Definition 3.2. A tropical curve Γ is a connected finite graph, together with an identification of
each edge with a tropical edge, such that all infinite points are leaves. If Γ has only finite points, it
is called a metric graph. Two such labelled graphs are considered to give the same tropical curve
if they have the same infinite points and their sets of finite points give the same metric space.

Note that we have chosen not to refer to two curves with a common subdivision as “equivalent”,
since elsewhere in the literature this term is reserved for a weaker notion in which all simply
connected tropical curves are considered equivalent (for example, in [21]).

Definition 3.3. A rational function on a tropical edge E is a piecewise linear function from E
to R ∪ {±∞}, where all finite points are sent to finite values, and the slope of the function on all
pieces is an integer. A rational function on a tropical curve Γ is a continuous function from Γ to
R ∪ {±∞} which restricts to each edge as a rational function on that edge.

Definition 3.4. The order of a rational function f at a point p on a tropical curve Γ is the sum
of outgoing slopes of f around p. The function f is called regular at p if it has nonnegative order
at p. A regular function on Γ is a rational function regular at all points in its domain.

Recall that we wish to regard tropical curves as being limits of images of curves under the
Log map. Given this, we should expect the logarithm of a regular or rational function to come to
resemble a function build up from the tropical operations ⊕ and ⊗; that is, a continuous piecewise
linear function. This is the reasoning behind this notion of rational function. The notion of
the divisor of a rational function similarly follows from reasoning about the limits of amoebas.
Although we do not wish to go into tropical algebra in this section, we simply mention that the
rational functions on a tropical curve do not form a field, but instead they form a semifield (with
the operations ⊕ and 	). In fact, this semifield is also a T-module, just as the ring of regular
functions and field of rational functions on a variety are C-modules. In [19], the theory of tropical
varieties is developed using the idea of a sheaf of tropical algebras; one can similarly define sheaves
of tropical modules and so forth. We shall not discuss any of that in this article.

Example 3.5. Consider the rational function f(t) = max(t − 2, 0) + min(t, 1) on the tropical edge
[0,∞]. The points 0 and 2 have order 1, the points 1 and ∞ have order −1, and all other points
have order 0. Notice in particular that the sum of the orders of all points is 0.
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Figure 5: A rational function on an infinite tropical edge. Coefficients of its divisors are indicated.

Observe that a rational function can have nonzero order at only finitely many points of Γ.
Hence rational functions can be used to define divisors on tropical curves, as we do in the following
section.

Most applications of tropical curves to algebraic curves concern constructions in which the genus
of the curve is the same as the genus of the tropical curve, in the following sense. This is true when
the tropical curve is constructed as the limit of amoebas, or through specialization in a totally
degenerate strongly semistable model.

Definition 3.6. The genus of a tropical curve is dimH1(Γ), where Γ is regarded as a topological
space.

Notice that if Γ is described by a multigraph, regardless of how edges are subdivided, the genus
is |E| − |V |+ 1.

We do not wish to delve too much into more general tropical varieties in this article, but we shall
briefly remark on how such definitions must work. The reader can presumably imagine how the
definitions above could be stated in terms of an atlas: a tropical curve is a topological space with
some atlas of open sets that are all homeomorphic to “stars” (single vertices with some number of
open rays emanating) such that the transition functions have integer slope. The reader may consult
[21] for a general definition, along these lines, of tropical varieties of all dimensions; one must replace
“stars” with “polyhedral cones” and “slope” must be understood to be the full derivative matrix
while must lie in GLn(Z).

4 Divisors and linear equivalence on tropical curves

In this section, we shall discuss the notion of linear series on tropical curves, in analogy with the
same notions on algebraic curves. These notions will provide the necessary language to state and
prove the tropical Bézout theorem in section 5.14 and will be used in section 6, through the use of
the specialization lemma, to obtain results about the corresponding notions on algebraic curves.

The definitions regarding linear series on tropical curves are completely analogous to the cor-
responding definitions for algebraic curves. After stating these definitions, we shall discuss the
Riemann-Roch theorem for tropical curves.

All these definitions (and the Riemann-Roch theorem) were originally stated and proved by
Baker and Norine [4] on graphs. These results were subsequently adapted to metric graphs and
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tropical curves in [22] and [12]. Baker and Norine also considered various aspects of the Jacobian
of a graph, although much of their analysis does not carry over to tropical curves. Mikhalkin and
Zharkov [22] have developed a more detailed theory of the Jacobian of a tropical curve, including
tropical analogs of Abel’s theorem and Jacobi inversion; their proof of Riemann-Roch is based on
tropical Abel-Jacobi theory. We do not discuss these developments here, because they require a
discussion of differentials and line bundles on tropical curves, which we have not developed.

Definition 4.1. Let Γ be a tropical curve. The group of divisors Div(Γ) is the free abelian group
generated by points of Γ. The degree of a divisor is the sum of its coefficients.

Definition 4.2. The divisor of a rational function f on Γ, denoted (f), is (f) =
∑

p∈Γ ordp(f).
Such divisors form a subgroup of Div(Γ), which is called the subgroup of principle divisors. Two
divisors are called linearly equivalent if they differ by a principle divisor. The group Pic(Γ) is
the quotient of the group of divisors by the group of principle divisors, i.e. the group of linear
equivalence classes.

Observe that given a rational function f , each interval in Γ on which f is linear contributes
some integer m to the order of f at one endpoint, and contributes −m to the order of f at the
other endpoint. The following proposition is immediate. Observe that this justifies our choice of
including infinite points in Γ, rather than leaving infinite edges half-open.

Proposition 4.3. The degree of a principle divisor is 0, hence the degree of a divisor class in
Pic(Γ) is well-defined.

As in the case of algebraic curves, we shall denote by Picn(Γ) the set of divisor classes of degree
n.

We define one divisor of particular importance on tropical curves (in particular, for the statement
of the Riemann-Roch theorem).

Definition 4.4. The canonical divisor of a tropical curve Γ is given by

K =
∑
p∈Γ

(Val(p)− 2)p

Where Val(p), the valence of p, is the number of edges leaving p (which is 2 at all but finitely many
points).

The canonical divisor is intriguing partially because it is seemingly the only intrinsically defined
divisor on Γ, which does not depend on a choice of subdivision of edges. Of course, it is far more
intriguing because it is a dualizing divisor for Riemann-Roch purposes (section 4.2). For a discussion
of why this definition should correspond to a canonical divisor on an algebraic curve, and more
particularly why we have defined one specific divisor, instead of a class, see section 6.2.

The structure of Pic(Γ) on tropical curves is closely related to its structure on algebraic curves,
as will be seen clearly in the next two subsections. The following two examples show the corre-
spondence in genus 0 and 1.

Example 4.5. Suppose that Γ has genus 0. Then Pic(Γ) ∼= Z, via the degree map. To see this,
observe that for any two finite points p, q ∈ Γ, there is a rational function given by f(x) = d(p, x)
on the unique path from p to q, and constant elsewhere (namely, it is 0 on the component of p
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Figure 6: The Picard group of a genus 1 tropical curve is a circle, and can be identified with a
nontrivial cycle in Γ. All points on attached trees are equivalent to the nearest point on this cycle.

and d(p, q) on the component of q on the space obtained by removing the path from p to q). This
gives (f) = p − q, hence p and q are linearly equivalent as divisors. As for infinite points, if p,q
are correspond to 0,∞ on an infinite edge, then the function given by f(x) = x on this edge and
f(x) = 0 elsewhere gives (f) = p− q. Thus every infinite point is equivalent to a finite point, and
in turn to every other point on Γ. Thus linear equivalence is entirely given by degree.

Observe that the argument above also shows that if Γ contains a tree that joins the rest of Γ at
a single point, then all points on this tree are linearly equivalent to the point where the tree joins
the rest of the graph. For this reason, other authors consider Γ to be equivalent as a tropical curve
to the result of pruning off all such trees, as in [21]. Operations that remove such trees are called
contractions.

Example 4.6 (The group law on tropical genus 1 curves). Suppose that Γ has genus 1. Let Γ′ be
the curve given by a subgraph corresponding to a nontrivial cycle. Then all points on Γ\Γ′ are
equivalent to a point on Γ′, by the discussion above (see figure 4.6). Hence Pic(Γ) ∼= Pic(Γ′), so
let us focus our attention on the cycle, Γ′. Let ` be the length of this cycle. We will show that
Pic0(Γ) ∼= R/`. The proof is entirely analogous to the argument that a genus 1 algebraic curve has
Picard group isomorphic to a curve itself.

First, observe that if p, q are two distinct points on Γ′, then they are not linearly equivalent as
divisors: if they were, there would be a rational function f such that p− q = (f). Such a function
would have slope n on one path from p to q, whose length we denote by a, and slope 1− n on the
other, whose length is ` − a. But then f(q) − f(p) would be both aλ and (` − a)(1 − λ), which
implies that ` = `λ+ a, and hence that a is an integer multiple of `, which is impossible. Hence no
two points on Γ′ are linearly equivalent.

Next, we demonstrate that a group law holds on Γ′. Fix a base point p0 ∈ Γ′, and identify
Γ′ with R/` via distance from a (which is well-defined modulo `). Suppose that x, y, z are three
values in R whose sum is a multiple of `, and let p, q, r be the three corresponding points on Γ′.
Assume without loss of generality that 0 ≤ x ≤ y ≤ z < `. Then let f be the piecewise continuous
function on [0, `] with f(0) = 0, slope 0 on (0, x), slope 1 on (x, y), slope 2 on (y, z) and slope 3
on (z, `). Then f(`) = 3` − x − y − z, which is k` for some integer k, by assumption of x, y, z.
Hence letting g(x) = f(x) − kx, we obtain a well-defined rational function on Γ′ whose divisor
is (g) = p + q + r − 3p0. Now, define a map φ : R/` → Pic0(Γ) by φ(x) = p − p0, where p is
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the point distance x from p0. Then it follows from the linear equivalence described above that
φ(x+ y) = φ(x) +φ(y). Also, φ(0) = 0, so φ is a homomorphism. The map φ is surjective, since its
image contains all divisors p− p0 and is closed under sum. The map is injective since φ(p) = φ(q)
if and only if p is linearly equivalent to q, which is the case if and only if p = q by the previous
paragraph. Hence φ is an isomorphism.

Thus we have established that Pic0(Γ) is isomorphic to a circle, with the usual group structure.
Furthermore, this circle can be identified with any nontrivial cycle in Γ in a natural way.

Mikhalkin defines moduli spaces of tropical curves in [21] (up to an equivalence relation that
contracts trees). The moduli space of genus 1 curves is simply R+, where the parameter is the
length ` above. In this sense, the length ` can be regarded as the tropical analog of the j-invariant
of an elliptic curve.

Proceeding with the analogy with algebraic curves, we now define ranks of divisors on tropical
curves. We would like, of course, to define this in terms of the dimension of the vector space of
global sections of some line bundle. It is possible to define line bundles on tropical curves and to
associate them to divisors (see [22]), but the sections of these line bundles do not form a vector
space (although they do form a tropical module).

The established convention is to carry over a different, equivalent, description of ranks of divisors
on algebraic curves. On an algebraic curve, a divisor A has rank at least n if and and if for all
effective divisors of degree n, |A−E| is nonempty. To see this, observe that for a section of the line
bundle L(A) to vanish on an effective divisor E is deg(E) linear conditions, hence if r(A) ≥ n, then
some nonzero section must vanish on E. Conversely, if r(A) < n, one can construct an effective
divisor of degree at most n such that |A − E| = ∅ inductively as follows: select any point p that
is not a base point for |A| (i.e. such that not all global sections of L(A) vanish at p). Then
r(A− p) < r(A). Proceeding in this way will construct the desired divisor E.

Bearing in mind this equivalent formulation for algebraic curves, we make the following defini-
tion.

Definition 4.7. A divisor E is effective if all its coefficients are nonnegative. The notation A ≤ B
will indicate that B−A is effective, and |A| will denote the set of effective divisors linearly equivalent
to A. The rank of a divisor A is:

r(A) = min{deg(E) : E ≥ 0, |A− E| = ∅} − 1. (1)

Do not take the analogy between ranks of divisors on tropical and algebraic curves too literally;
while a linear series on an algebraic curve is a bona fide geometric object whose dimension is the
rank, the same is not true for linear series on tropical curves. Linear series on tropical curves
can be understood geometrically as polyhedral complexes, as in [14], but the dimensions of these
complexes are not the same as the rank.

The reader may well protest, on the basis of these pathologies, that we have surely defined
ranks of divisors incorrectly, and all consideration of them is a sham. In our defence, we offer
the specialization lemma 6.1, which is a powerful testament to the ability of our notion of rank to
prove nontrivial facts about divisors on algebraic curves. We also offer the Riemann-Roch theorem,
whose persistence under this definition of rank is surely a testament to its rich underlying content.

4.1 The Riemann-Roch criterion

Baker and Norine [4] prove that the Riemann-Roch formula can be deduced from an abstract
criterion which only concerns divisors of degree g − 1. To motivate this criterion, observe that on
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an algebraic curve, if D ≤ E, then |E| = ∅ implies that |D| = ∅. Hence, to understand which
divisors give an empty linear series, it suffices to understand the maximal such divisors, under the
ordering given by ≤. It can be deduced from the Riemann-Roch theorem and formula 1 that all
such divisors on a curve have degree g − 1. In addition, the set N of degree g − 1 divisors with
empty linear series is symmetric about any canonical divisor, in the sense that K −N = N . The
basic observation in [4] is that the full Riemann-Roch formula can be recovered from only these two
facts. Thus the tropical Riemann-Roch formula will follow from an understanding of the maximal
divisors with empty linear series on graphs.

In order to formulate the Baker-Norine criterion in its full generality, we shall define the notion
of a divisor system. We include this only for the sake of generality; the reader may simply think of
divisors and divisor classes on an algebraic curve, graph, or tropical curve.

Definition 4.8. Let D be an abelian group, and E a sub-semigroup of D. Suppose that π : E � P
is a surjective homomorphism, and that deg : P → Z is a homomorphism. By abuse of notation,
we will also use deg to denote the composition deg ◦π and its restriction to E . We will refer to the
image under deg of an element in E ,D, or P as the degree of that element. We shall also assume
that all nonzero elements of E have positive degree. The data of E ,D,P, π, and deg satisfying these
conditions will be referred to collectively as a divisor system, and we will usually simply refer to
the system as a whole as D. Elements of D will be called divisors, elements of E will be called
effective divisors, and elements of P will be called divisor classes. Two divisors A,B ∈ D will be
called equivalent if π(A) = π(B).

Definition 4.9. Suppose that D is a divisor system. Then for A,B ∈ D, we shall write A ≥ B to
denote A−B ∈ E . For any A ∈ D, |A| will denote the set of all effective divisors equivalent to A.
The rank of a divisor is r(A) = min {degE : E ∈ E , |A− E| = ∅} − 1.

Note that the condition that deg(A) 6= 0 for nonzero effective divisors is imposed to ensure that
for divisors A of degree 0, r(A) = 0 holds if and only if π(A) = 0.

Using this terminology, we can now formulate the necessary criterion. We point out that the
Riemann-Roch criterion in [4] is phrased somewhat differently, but it is equivalent. The criterion
simply expresses the fact that maximal divisors with empty linear series form a symmetric set in a
single degree.

Definition 4.10. A divisor system is called Baker-Norine if there is a set N of divisors, all of the
same degree, such that the following two conditions hold.

BN1 For any divisor A, |A| = ∅ if and only if A ≤ ν for some ν ∈ N .

BN2 There exists a divisor K such that K −N = N .

The set N is called the set of moderators, and the genus g is the integer such that all moderators
have degree g − 1.

Observe that in a Baker-Norine divisor system, the genus and moderator set are uniquely
determined (the moderator set must include all divisors of degree g − 1). The divisor K is not
uniquely determined, but we will see momentarily that its divisor class is. (ALSO remark on
tropical curves)

As we observed at the beginning of this section, the divisors on an algebraic curve give a Baker-
Norine system. In fact, the Baker-Norine criterion is equivalent to the Riemann-Roch formula.,
due to the following theorem, originally proved by Baker and Norine [4].
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Theorem 4.11. A divisor system is Baker-Norine if and only if there exist an integer g and a
divisor K that satisfy the Riemann-Roch formula for all divisors A:

r(A) = r(K −A) + deg(A) + 1− g. (2)

Proof. First, suppose that g, K exist such that equation 2 holds. Then for any divisor A of degree
g− 1, r(A) = r(K −A), and property BN2 follows. Also, for any divisor A, r(A) < 0 if and only if
r(K −A) < g − 1− deg(A). By definition, this is true if and only if there is some effective divisor
E of degree g − 1 − deg(A) such that r(K − A − E) < 0. In this case, deg(K − A − E) = g − 1.
In other words, r(A) = −1 if and only if there exists some ν ∈ Ng−1 such that ν ≤ K − A, i.e.
A ≤ K − ν. But since property BN2 holds, this is true if and only if A ≤ ν for some ν ∈ Ng−1.
Thus property BN1 holds as well, and the divisor system is Baker-Norine.

Conversely, suppose that the divisor system is Baker-Norine, for some g,K. Let A be any
divisor, and suppose that E is some effective divisor such that r(A−E) = −1. The existence of E
can be used to construct a corresponding effective divisor F for (K − A), as follows. By property
BN1, there exists some ν ∈ Ng−1 such that A − E ≤ ν, i.e. there is an effective divisor F such
that A − E = ν − F . This is equivalent to (K − A) − F = (K − ν) − E. Now, by property RR2,
K − ν ∈ Ng−1, and thus by property RR1, r((K − A)− F ) = −1. By definition, this implies that
r(K − A) ≤ deg(F ) − 1. Now, deg(F ) = g − 1 + deg(E) − deg(A). If E is chosen to have the
smallest possible degree, namely r(A) + 1, then we obtain the following inequality:

r(K −A) ≤ r(A)− deg(A)− 1 + g. (3)

Replacing A with K−A gives the reverse inequality, and establishes the Riemann-Roch formula.

Corollary 4.12. In a Baker-Norine divisor system, the integer g is unique, and K is unique up
to equivalence.

Proof. That g is unique follows from the remark after definition 4.10. Suppose K1, K2 are two
distinct divisors such that Ng−1 is symmetric about both. Then formula 2 holds using either divisor,
hence r(K1 − A) = r(K2 − A) for all divisors A. In particular, r(K1 − K2) = r(0) = 0, and it
follows that K1 −K2 is equivalent to 0.

4.2 Tropical Riemann-Roch

The basic idea in [4], used to prove the Riemann-Roch theorem for graphs, is to identify a specific
divisor in any given equivalence class that is extremal in a suitable sense, and demonstrate the
condition BN1 for such extremal divisors. The same notion does not apply verbatim in the case of
tropical curves, but can easily be adapted to it. We follow roughly the same approach as citeMZ.
An alternative proof can be found in [12], where the Riemann-Roch theorem for tropical curves is
deduced from the Riemann-Roch theorem for graphs.

For various reasons, it will be easier in the discussion that follows to exclude infinite edges.

Lemma 4.13. Let Γ be a tropical curve, and Γ′ a metric graph such that Γ can be obtained by
adding infinite edges to Γ′. Then Div(Γ) is Baker-Norine if and only if Div(Γ′) is Baker-Norine.

Proof. As observed in the paragraph before example 4.6, any divisor on Γ is linearly equivalent to a
divisor with no support on infinite edges, by simply moving all points in the divisor to the nearest
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vertex in Γ′. Hence we obtain a map Div(Γ) � Div(Γ′) that induces an isomorphism of Picard
groups and preserves effective divisors. Hence this map also preserves ranks of divisors. It follows
that Riemann-Roch is true for Γ if and only if it is true for Γ′, i.e. Div(Γ) is Baker-Norine if and
only if Div(Γ′) is Baker-Norine.

Other proofs of the tropical Riemann-Roch theorem proceed by studying so-called v-reduced
divisors, which are unique divisors in a given divisor class that are particularly easy to study. The
analog for algebraic curves is as follows: given a divisor A and a point p on an algebraic curve,
one can ask what the maximum order of vanishing (possibly negative) is for a meromorphic section
of the line bundle L(A) that is holomorphic at all points except v. There is a unique section (up
to scale) that achieves this maximum; its divisor is called v-reduced. Baker and Norine studied
an analogous notion for graphs in [4], and used this notion to prove the Riemann-Roch theorem
for graphs, and the same idea has been generalized to tropical curves. Given a tropical curve, a
chosen point v, and a divisor class, there is a unique v-reduced divisor in this class. In this article,
we define a weaker notion, which we call a divisor tight at v. Unlike v-reduced divisors, divisors
tight at v are not unique in their divisor class, however the notion is still strong enough to prove
the Riemann-Roch theorem. We have adopted it here because we believe that it makes the proof
slightly more comprehensible.

Definition 4.14. Let Γ be a metric graph, and let v ∈ Γ, and suppose that A,B are two divisors
on Γ. Then A is called nearer to v than B if there exists a radius r ≥ 0 such that all point within
distance r of v in Γ have at least as large a coefficient in A as in B, and at least one point has a
strictly larger coefficient in A. This relations is transitive. A divisor A is called tight at v if it is
effective away from v, and no other divisors in its equivalence class and effective away from v is
nearer to v than A.

Lemma 4.15. On a metric graph Γ, for each v ∈ Γ and each divisor class, there exists a divisor
in this class that is tight at v.

Proof. First, we verify that given a divisor A, there is some A′ equivalent to A that is effective
away from v. It suffices to show that for any p 6= v, there is a rational function f such that (f)− p
is effective away from v. Taking a finite sum of such functions, we will be able to find such a divisor
A′, by successively canceling all negative coefficients (at the expense of more and more negative
coefficients at v). Such a function f can be constructed as a continuous piecewise linear function
of the distance from v in Γ whose slope increases by a sufficient quantity at each distance where a
vertex of Γ occurs.

Now, given that such divisors A′ exist, restrict attention to those with the largest possible
coefficient at v. Now, the degree of these divisors away from v is fixed. By compactness, we may
restrict to only those divisors whose point nearest to v attains the minimum possible value, and
also restrict to those divisors which attain this minimum at a particular chosen point. We may
proceed in this fashion until each point in the divisor has been uniquely specified. The result must
be a divisor equivalent to A that is tight at v.

Definition 4.16. An ranking ρ of a tropical curve Γ is a choice of orientation for all edges in some
subdivision of Γ, with the property that there are no oriented cycles in Γ. The rank divisor of a
ranking ρ is the divisor νρ on Γ, supported on the vertex set of the subdivision used to define ρ,
whose coefficient at a point p is one less than the number of outward-oriented edges incident to p.
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Figure 7: Rank divisors for two opposite rankings on a graph.

Lemma 4.17. A rank divisor νρ has degree g − 1 and |νρ| = ∅. If ρ′ is the opposite ranking of ρ,
then νρ + νρ′ is the canonical divisor.

Proof. The degree of νρ is simply
∑

v∈Γ(νρ(v)− 1) = |E| − |V | = g − 1, where E, V are the edges
and vertices of some subdivision of Γ that includes all points in the support of νρ. Now, suppose
|νρ| 6= ∅. Then there is some rational function f such that νρ + (f) is effective. The ranking ρ
generates a partial order on the vertices of and subdivision of Γ that includes all places where the
orientation changes direction. Among all vertices in a sufficient subdivision, consider the points
that maximize f . Among these points, choose one point, p, that is minimal with regard to the
order induced by ρ. Then the slope of f is negative along each edge out of p that is oriented away
from p, and it is at most zero in all other directions. It follow that the coefficient of p in νρ + (f)
is negative, and hence this divisor is not effective. It follows that |νρ| = ∅. The final statement
follows immediately from definitions.

The fact that νρ+ νρ′ is the canonical divisor will be the final step in the proof of the Riemann-
Roch theorem, and will explain why the canonical divisor functions as a dualizer.

Lemma 4.18. For any v-reduced divisor A that is not effective, there exists some rank divisor νρ
such that A ≤ νρ.

Proof. Let G be a multigraph obtained by a subdivision of Γ that includes all vertices in the support
of A as vertices. We shall construct an order on the vertices of G, which will given rise to a ranking
ρ, by orienting each edge in the direction of the lower-ordered vertex. Let the highest-order vertex
be v, and construct the rest of the order inductively, as follows. Suppose that at a given stage, the
set of vertices already placed in the order is S, and let T be the complement of S in V (G). Let ` be
the length of the shortest edge between a vertex of S and a vertex of T . Define a rational function
f that is equal to 0 on S, ` on T , and has slope 1 for the length ` segment beginning in T for each
edge between S and T . Then (f) is a divisor with positive coefficient for some point on each edge
between S and T , and whose coefficient at any vertex in T is the number of edges from that vertex
to a vertex in S. Then A+ (f) must have negative coefficient at some point in T , or else it would
be a a divisor effective away from v that is nearer to v than A. This point must be a vertex w in
T ; let w be the next vertex in the order of V (G).

Having constructed this order, and the associated orientation ρ in this way, each vertex in V (G)
other than v has more edges oriented towards it than its coefficient in the divisor A, by construction.
But this means precisely that A ≤ νρ away from v. However, we assumed that A was not effective,
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so the coefficient of v in A is at most −1, which is the coefficient of v in νρ. Thus A ≤ νρ, as
desired.

Combining these lemmas, we obtain the Riemann-Roch theorem for tropical curves.

Theorem 4.19 (Tropical Riemann-Roch). Let Γ be a tropical curve, with canonical divisor K and
genus g. Then for all divisors A,

r(A) = r(K −A) + deg(A) + 1− g. (4)

Proof. By lemma 4.13, it suffices to prove the result for metric graphs, so assume that Γ has no
infinite edges. Let N be the set of all divisors which are linearly equivalent to a rank divisor. By
lemma 4.17, these are all divisors with empty linear series and in the same genus. Now, for any
divisor A, if A ≤ ν for some ν ∈ N , then clearly A has empty linear series. Conversely, if A has
empty linear series, then upon fixing a vertex v, A is linearly equivalent to a v-reduced divisor A′

by lemma 4.15, and by lemma 4.18, A′ ≤ ν for some ν ∈ N , and thus A ≤ A + (ν − A′), and
A+ (ν −A′) ∈ N . Thus condition BN1 from definition 4.10 is satisfied for the set N .

Now, observe that for any rank divisor νρ, if ρ′ is the ranking obtained by reversing all the
orientations of ρ, it follows from the definition of K that νρ + νρ′ = K. It follows that N is
symmetric about K, so condition BN2 from defintion 4.10 is satisfied, and hence DivΓ is Baker-
Norine. By theorem 4.11, the Riemann-Roch formula holds.

We are not aware of an interpretation of the tropical Riemann-Roch theorem that views the
quantity r(A)− r(K −A) as an Euler characteristic, as it is often viewed in classical geometry. If
such an interpretation could be found and generalized, then it could potentially be brought together
with the general tropical intersection theory apparatus developed by Mikhalkin in [21] to prove a
tropical Hirzebruch-Riemann-Roch theorem. This would be a marvelous development, but we are
not currently aware of any progress in this direction.

5 Tropical plane curves

We now study tropical curves that arise as non-archimedean amoebas in R2. Such amoebas can
be studied more simply not as the image of curves over K under valuation, but as the corner sets
of tropical polynomials. Theorem 2.4 is the basic tool that permits this correspondence. Each
tropical polynomial can be lifted to many polynomials over K, all of which share properties with
the tropical curve in R2. We begin with summarizing some notions from tropical algebra.

5.1 Tropical algebra and tropical projective space

Definition 5.1. The tropical semifield T is the set R ∪ {−∞} endowed with the following two
operations.

• Tropical addition: x⊕ y = max(x, y).

• Tropical multiplication: x⊗ y = x+ y.
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Figure 8: A stratification of the projective tropical plane, which is homeomorphic to a closed disc.

Observe that T, with tropical addition and multiplication, satisfies all the axioms of a field
(where the additive and multiplicative identities are −∞ and 0), except for the existence of additive
inverses. Such inverses clearly cannot exist because x⊕ x = x for all x ∈ T.

Some authors (for example, [25]) use a different convention, defining tropical addition to be
given by maximum, rather than minimum. In this case, the underlying set includes +∞ rather
than −∞ as the additive identity.

A tropical polynomial is simply an expression in some number of unknowns, constructed us-
ing tropical addition and multiplication. Tropical polynomials are piecewise-linear functions with
integer slope where differentiable.

In this section, we shall only work in R2. However, there are various compactifications of the
plane available; in particular, each compact toric surface gives a compactification. We shall not
need these for our purposes, but we mention the most straightforward example to give a sense for
where tropical plane curves might more naturally live.

Definition 5.2. The tropical projective plane TP2 is the set T3\{[−∞,−∞,−∞]} modulo tropical
multiplication.

Observe that the tropical projective plane has the topology of a closed disc (see figure 8). In
particular, the points at infinity form a topological boundary component. This contrasts with CP2,
where the choice of the line at infinity is entirely arbitrary.

5.2 Tropical curves in R2

We now describe how tropical polynomials in two variables give rise to tropical curves in the sense of
[11], along with a geometric realization in R2. More precisely, we will describe a way to associate, to
each tropical polynomial in two variables, an abstract tropical curve Γ, together with a continuous
map from the finite points of the curve to R2 such that piecewise linear functions on R2 pull back
to rational functions on Γ.

For notational convenience, we shall denote by Γfin the finite part of Γ.
Let p(x, y) =

⊕
(i,j)∈I(ci,j ⊗x⊗iy⊗j) be a tropical polynomial in two variables. Here, I is called

the monomial set, and we assume that each ci,j 6= −∞. Of course, we could just as well take I to
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Figure 9: Four tropical curves, along with their Newton subdivisions and defining polynomials.

be N×N and stipulate that all but finitely many ci,j are −∞. However, as we will see, the set I
of finite coefficients is very important to the behavior of the curve.

We define the tropical plane curve defined by p (as a set) as follows.

Definition 5.3. Let p(x, y) be as above. Then for all (x, y) ∈ R2, define the valence of (x, y)
with respect to be the number of monomials ci,j ⊗ x⊗iy⊗j which achieve the value p(x, y). The
tropical plane curve corresponding to p(x, y) is the closure in R2 of the set of points with valence
greater than 1. A subspace of a tropical plane curve is called an edge if it is a maximal subspace
homeomorphic to an open interval, and points that do not lie on edges are called vertices.

Figure 9 shows the tropical curves in R2 corresponding to four different tropical polynomials.
As we shall do for the rest of this paper, we have drawn the Newton subdivision to the left of
each curve. The Newton subdivision is a convenient way to represent the coefficients of a tropical
polynomial, as we shall see.

Definition 5.4. Let p(x, y) be a tropical polynomial, and suppose that the indices (i, j) of the
monomial set are plotted in Z2. Then the convex hull of these points is called the Newton polygon
of p. Suppose in addition that an edge is draw between all pairs of indices such that the corre-
sponding monomials simultaneously achieve the value p(x, y) somewhere in the plane. The result
is a subdivision of the Newton polygon into small polygons. This subdivision is called the Newton
subdivision, and the smaller polygons are called the faces of the subdivision.
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Figure 10: A plane tropical curve of genus 2.

When drawing the Netwon polygon, we typically label vertices with the coefficient ci,j , as in
figure 9. The resulting picture is a useful visualization tool, because it gives a dual graph for the
tropical plane curve, in the sense that the faces of the subdivision correspond to vertices of the
curve, and the edges correspond to edges of the curve. The edges on the boundary of the Newton
polygon correspond to infinite edges. We shall see that several other attributes, including the genus
of the curve and various notions of multiplicity, are most easily expressed in terms of the Newton
subdivision.

Figure 10 shows a more complicated tropical curve, of genus 2. We point out that the general
shape of the curve can be completely read off of the Newton subdivision; in this case, we have not
even bothered to choose the coefficients. This curve is also a good illustration of the genus formula,
which we shall see in section 5.3.

The duality between the Newton polygon (labelled with coefficients) and the plane curve can
be observed as follows. Given a point (x, y) ∈ R2, we obtain a linear form (i, j, ci,j) 7→ ci,j + ix+ jy
on Z2 which described how large each possible monomial is. This form defines a plane Λ through
the origin in R3. Now, if we imagine putting the Newton subdivision into R3 by raising each vertex
(i, j) to heigh ci,j , the largest monomial, at the point (x, y), will correspond to the vertex that rises
the highest above this plane. Hence the edges in the plane curve will correspond precisely to pencils
of planes that are equal on some set of coefficients; these coefficients must, then, all lie on a line in
R3. The vertices of the plane curve correspond to a plane that contains three or more vertices that
do not lie on a line; this will precisely be a face of the Newton subdivision. Finally, the slope of any
edge in the plane curve will be perpendicular to the slope of the corresponding edge in the Newton
subdivision; this is a straightforward calculation. In many ways, the Newton subdivision appears
to be the most efficient way to quickly visualize and draw tropical plane curves. In addition, in
provides the correct combinatorial framework for some enumerative problems in tropical geometry,
as in [19].

All of the examples of tropical plane curves that we have presented so far have had had fully
subdivided Newton polygons (i.e. the subdivision breaks the polygon into triangles of area 1

2).
However, consider what happens when this is not the case. For example, we can deform the
bottom two tropical curves in figure 9 by changing a single coefficient to bring two of the infinite
tentacles into coincidence. The result is shown in figure 11. Clearly we should regard the edges
that are drawn double in this figure as being edges of multiplicity 2. Thus we make the following
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Figure 11: The tropical quadrics from figure 9, upon having two tentacles brought together to
produce an edge of higher multiplicity.

definition.

Definition 5.5. The multiplicity of an edge in a hypersurface is the val(p) − 1, where p is any
point on the interior of the edge.

Edge multiplicity is very easy to read off of the Newton polygon: each edge in the hypersurface
passes through some number of vertices of the polygon, and the multiplicity is one less than this
number.

An informal justification for this definition of multiplicity can be seen by considering how an
edge with multiplicity could arise from a degeneration of an amoeba. Suppose that an edge arises
due to the equality of the terms corresponding to monomials xiyj , xi+dyj+e, . . . xi+mdyj+me, where
m is the multiplicity. Then d and e are relatively prime, or else there would be more monomials
in between in the Newton polygon. Thus the edge in question arises from the degeration of a part
of the curve that eventually comes to look like it is given by an equation 0 = xiyj · q(xdye), where
q is a polynomial of degree m in one variable. But this equation factors, and once points that do
not lie in (C∗)2 are thrown out, what remains are m irreducible curves (one for each root of q).
Hence in the limit, the resulting edge in R2 corresponds to m different curves layering on top of
each other. All this can be understood more rigorously be using Puiseux series, and the critical
technical ingredient is Hensel’s lemma; we will discuss how this works in section 5.5.

Thus we see that in order to specify a tropical plane curve, we should really give not only the
set in R2, but also the edge multiplicities. The reader can verify that these data unique determine
the polynomial defining the curve, up to tropical multiplication by a scalar. We can now describe
how to associate to a tropical plane curve a map from an abstract tropical curve.

Definition 5.6. Given a tropical polynomial p(x, y) that defines a tropical plane curve T , we define
a tropical curve Γ as follows. For each vertex inT , Γ has a finite vertex. For each edge of multiplicity
m between finite points in T , Γ has m edges between the corresponding finite points. For each
infinite edge of multiplicity m in T , Γ has m infinite edges originating from the corresponding finite
vertex. If T has an edge with no finite end, first subdivide this edge with a finite vertex and proceed
as already described.

For each edge [0, `] in Γ, we define a linear map this edge to T such that f(0) is the finite vertex
corresponding to the vertex 0, and the slope of f is precisely the primitive integer vector pointing in
the direction of the edge in T . Taken together, this defined a continuous rational map f : Γfin → T .

This definition seems rather complicated, but it actually quite simple: the plane curve essentially
gives a model for the metric graph. The only wrinkles are that edges with multiplicity must be
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Figure 12: A tropical curve with multiple edges and its corresponding abstract tropical curve.

split into several edges between the same vertices, points at infinity must be split to avoid having
several infinite edges go to the same point at infinity, and edge lengths must be assigned in such a
way that the map from Γ to the plane curve is piecewise linear with integer slope.

Figure 12 depicts a tropical plane curve with its Newton subdivision, and the corresponding
abstract tropical curve. Notice that the plane curve has two double edges; the one going to infinity
becomes two edges to two different infinite points, while the finite one becomes two edges between
the same two vertices. Although this may seem like a curious convention (as opposed to allowing
the doubled infinite edge to become two edges to the same infinite vertex), it is actually very
convenient. For example, we shall see that the genus formula discussed in the following section
would not hold in nearly as nice a form if we used a different convention.

To demonstrate that our convention on lengths of edges and edge multiplicity makes sense,
we prove the following proposition (which we should certainly hope to be true if the definition
properly mirrors the degenerations of amoebas we are trying to formalize). In [11] and elsewhere,
this proposition is called the balancing condition, and is phrased in different language that does
not make use of abstract tropical curves. A second, perhaps more convincing, vindication of this
convention will come in the following section.

Proposition 5.7. Suppose f : Γfin → T is as above. The functions x and y on R2 pull back to Γ
as rational functions whose divisors are supported at infinite points only.

Proof. It is clear that x pulls back to each edge of Γ as a linear function, so its divisor must be
supported on the vertex set. Consider one vertex, v. For a sufficiently small neighborhood of v in
R2, T consists of several rays emanating from v. In between each two rays is a region in which
a unique monomial of p achieves p(x, y). Suppose that two adjacent such regions correspond to
monomials ci1,j1 ⊗ xi1 ⊗ yj1 and ci2,j2 ⊗ xi2 ⊗ yj2 . Then the edge dividing these two regions has
slope 1

m(j2 − j1, i1 − i2), where m is the multiplicity of the edge. Thus the outward slope of the
pullback of the function x is 1

m(j2 − j1). Now, summing for all such edges in Γ results in summing
j2− j1 for each edge in T leaving v, which clearly cancels. Thus the divisor of x must be supported
only at infinity. The same reasoning will apply to the pullback of the function y to Γ.
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Figure 13: Degeneration to the singular point of the curve in figure 12, together with the corre-
sponding part of the Newton subdivision.

5.3 Calculation of the genus

One would hope that the tropical curve obtained by degenerating an amoeba would have the same
genus as the original curve. This following theorem shows that this is nearly true, and gives a
criterion to see where it fails.

Theorem 5.8. Suppose that p(x, y) is a tropical polynomial, associated to a map f : Γ→ T ⊂ R2

from an abstract tropical curve. Then the genus of Γ is equal to the number of vertices on the interior
of the Newton polygon of p that are not on the interior of any face of the Newton subdivision.

We shall prove this theorem momentarily, but we first make some remarks. Referring back to
figures 10 and 12 give two examples of this theorem. The curve in figure 10 uses all of the vertices
in its Newton polygon for subdivision. The curve in figure 12, on the other hand, has one vertex
whose corresponding face in the Newton subdivision has an interior point (the point is not marked,
but lies in the triangle bounded by coefficients 3, 7, 8). We may regard the corresponding point
in the curve as a singular point, which causes the genus of the tropical curve to drop. Figure 13
illustrates how a cluster of nonsingular points (which would have contributed 1 to the genus of the
plane curve) can degenerate to the singular point of the curve in figure 12.

Just as in the case of algebraic curves, to each such “singularity” we may associate an integer (in
this case, the number of vertices inside the corresponding face of the Newton subdivision) which
measures, precisely, the contribution of the singularity to the genus of the tropical curve. This
suggests the following definition, to carry on the analogy to algebraic curves. We are not aware
whether the following definition is standard in the literature.

Definition 5.9. The arithmetic genus of a tropical plane curve is the number of points in the
interior of the Newton polygon of the defining tropical polynomial. The geometric genus of the
curve is the genus of the abstract tropical curve Γ.

In [19], tropical plane curves whose Newton subdivisions completely subdivide the Newton
polygon into triangles of area 1

2 are called smooth. So we see that for a smooth curve, the genus is
precisely the number of interior points of the Newton polygon. Hence we have the following two
calculations, which agree with what we expect from algebraic curves of degree d in the plane and
of bidegree (d, e) on P1 ×P1, respectively.

Corollary 5.10. A smooth tropical plane curve which has monomials of all degrees up to d has
genus

(
d−1

2

)
.
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Corollary 5.11. A smooth tropical plane curve which has monomials of all bidegrees that are
componentwise less than or equal to (d, e) is (d− 1)(e− 1).

We now give the proof of the theorem, which is essentially an exercise in Pick’s theorem.

Proof of theorem 5.8. Let the faces of the Newton subdivision be F1, . . . , Fn. Let Ii, Bi be the
number of verticies on the interior and boundary of the face Fi, respectively. Let vi be the finite
vertices of Γ corresponding to face Fi. Let w1, . . . , wm be the infinite vertices of Γ. Then the
number of vertices of Γ is n+m and the number of edges is

∑
v∈V (Γ)

1
2val(v) =

∑n
i=1

1
2val(vi)+ 1

2m,

so the genus of Γ is
∑n

i=1
1
2val(vi)− 1

2m−n+ 1 =
∑n

i=1(1
2val(vi)− 1)− 1

2m+ 1. Now, val(vi) is the
number of edges around the face Fi counted with the correct multiplicity, which is simply Bi. Let
Ai be the area of the face Fi. By Pick’s theorem, Ai = Ii+

1
2Bi−1. Now, using this, it follows that

the genus of Γ is equal to
∑n

i=1(Ai − Ii)− 1
2m+ 1 = A−

∑n
i=1(Ii)− 1

2m+ 1, where A is the area
of the Newton polygon. Now, observe that applying Pick’s theorem to all of the Newton polygon,
and using the fact that m, the number of infinite vertices, is equal to the number of vertices on the
boundary of the polygon, it follows that A − 1

2m + 1 is the number of vertices on the interior of
the Newton polygon. It follows that the genus of Γ is the number of of vertices inside the Newton
polygon that are not inside any of the faces of the subdivision.

5.4 Stable intersection and the tropical Bézout theorem

One of the very convenient aspects of tropical plane geometry is that the intersection of two curves,
as a set of points with multiplicity is always well-defined, even when intersecting a curve with itself.
To distinguish this notion from the set-theoretic intersection of two tropical curves, we define the
notion of stable intersection, as follows.

Definition 5.12. Let T1, T2 be two tropical plane curves, associated to maps fi : (Γi)fin → R2

from abstract tropical curves to the plane. Then the function p2 pulls back to a rational function
on Γ1, with a divisor A ∈ Div(Γ1). Then the stable intersection of the Γ1,Γ2 in R2 is the divisor
A, restricted to the finite part of Γ1 and pushed forward to R2.

From this definition, it is clear that the stable intersection is a finite number of points (counted
with some multiplicities). However, the definition has the defect that it is not immediately clear
that it is symmetric (i.e. that the same multiset is obtained if T1, T2 are interchanged). For now,
we shall regard stable intersection as being a notion defined only for ordered pairs of tropical
polynomials. After we have proven the Bézout theorem, however, we will prove in corollary 5.16
that in fact the stable intersection does not depend on the order that the two polynomials are given.
After that, we may regard it as a symmetric notion.

Stable intersection can also be defined using perturbations: if the images of the two curves
in R2 do not intersect transversely, then they can be perturbed slightly to produce a transverse
intersection. Then, taking a limit as this perturbation returns to the original polynomials, one
obtains the stable intersection. We have chosen to instead use the notion of rational functions on
tropical curves, because we believe that it reduces the technicalities involved in proving that the
notion is well-defined.

Figure 14 shows the stable intersection of two tropical lines whose ordinary intersection is
not discrete. Figure 15 shows a single tropical curve intersecting a line in several different ways.
Multiplicities are indicated next to intersections.
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Figure 14: The stable intersection of two tropical lines.

Figure 15: A tropical curve and its stable intersection with several different tropical lines.

Stable intersection can be visualized geometrically by observing that tropical curves are given
by the “creases” in the graphs of piecewise-linear functions. Hence when intersecting two curves,
we should only include the points on one curve which can “see” the crease of the function defining
the other curve. In the case of the two lines intersecting in figure 14, the two functions crease in
exactly the same direction, so the crease on the large set-theoretic intersection cannot be seen from
the lines themselves, except at the point of stable intersection.

Observation 5.13. The same idea that underlies stable intersection can also be used very fruitfully
for interpolation. The simplest example of interpolation is determining a tropical line through two
chosen points. Such a line always exists, but is not always unique. However, a method is described
in [25] which defines a unique line through two points in a natural way. The approach is closely
related to the definition of stable intersection, which is also discussed in the same paper. Similarly,
any five points define a unique quadric, in a suitable sense. An implementation of such tropical
interpolation techniques and a discussion of some applications can also be found in [25].

Upon defining stable intersection, we are able to prove a tropical version of the Bézout theorem:

25



Figure 16: The computation of mixed volume for the intersection of a line and bidegree (2, 1) curve.

the degree of the stable intersection of two tropical curves depends only on the coefficient sets of
the two polynomials.

Theorem 5.14 (Tropical Bézout). If p1, p2 are tropical polynomials in two variables with coefficient
sets having Newton polygons N1, N2, then the degree of the stable intersection of the corresponding
tropical curves T1, T−2 is equal to the mixed volume of N1, N2. That is, the number of intersections
is Area(N1 +N2)−Area(N1)−Area(N2). Here we intend N1 +N2 to mean {x+y : x ∈ N1, y ∈ N2}.

Before proving the theorem, we illustrate it with figure 16, which shows the computation of the
relevant mixed volume for the intersection of a line and a bidegree (2, 1) curve shown in figure 15.
The Newton subdivision shown is for the union of the two curves, and includes all the faces of the
line (vertical hatching) and the other curve (horizontal hatching). What is left consists of a total
area of 3. Each of the two remaining faces has area equal to the intersection multiplicity at that
point.

Proof. Suppose that p1, p2 are tropical polynomials with Newton polygons N1, N2, and the rational
function p2|Γ1 on the tropical curve Γ1 of p1 is given by pulling back the function p2 to Γ1.

First, we prove that the number of intersections (with multiplicities) does not depend on the
particular polynomial p2, once N2 has been fixed. To see this, observe that for a given Newton
polygon for a polynomial p, there exists some radius R such that for (x, y) outside a circle of
radius R, the slope of the function p(x, y) does not depend on the choice of the coefficients of p.
Then sufficiently far along the infinite edges of Γ1, the slope of the function p2|Γ1 is determined
by the polygon N2. Thus the portion of the divisor (p2|Γ1) supported on the infinite part of Γ1 is
independent of the choice of p2. Since the part of the divisor that is supported on the finite part
of Γ1 is linearly equivalent to the additive inverse of the part supported on the infinite part, the
divisor class of the finite part of the divisor is independent of p2. In particular, the degree of the
finite part is fixed. It follows from this that the number of points in the stable intersection in R2,
counted with multiplicities, is independent of the choice of p2.

Thus in order to calculate this number, we may begin by assuming that p2 is chosen as a general
polynomial with polygon N2. In particular, we may assume that all points of intersection of the
two curves in R2 consist of transverse intersections of two line segments, meeting at a point in the
relative interior of both line segments. Now, consider the tropical curve given by p1 ⊗ p2. The
Newton polygon of this polynomial will be N1 + N2. The faces of the Newton subdivision will all
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correspond to either vertices of Γ1, vertices of Γ2, or points of intersection of the two. The vertices
of Γi will have faces identical to the corresponding faces in the subdivisions of Ni, thus they will
account for a portion of the area of N1 +N2 equal to the sum of the areas of N1 and N2. On the
other hand, the intersection of two lines with slopes (multiplied by multiplicities) (x1, y1), (x2, y2)
will account for a face in the subdivision of N1 + N2 with area det ( x1 x2y1 y2 ). As is easy to verify,
this is precisely equal to the intersection multiplicity of these two edges. Hence the total number
of intersections, counted with multiplicity, is the difference between the total area of N1 +N2 and
the sum of the areas of N1 and N2, as claimed.

Corollary 5.15. The number of intersections of the two curves, counted with multiplicity, is sym-
metric between the two polynomials.

Corollary 5.16. The stable intersection, as a multiset, is symmetric between the two polynomials.

Proof. Let p be any point in the tropical plane. Then the multiplicity of the intersection of the
two curves at p (possibly 0) can be calculated by restricting attention to the polynomials p1, p2 in
a small neighborhood of p. In this neighborhood, we may assume that both curves are simply stars
(several rays emanating from p). The stable intersection of these two stars must be supported only
at p. By the previous corollary, the multiplicity of p in this intersection does not depend on the
order the polynomials are presented. Hence the multiplicity of p in the original intersection also
does not depend on the order that they were presented.

Observation 5.17. As we see in the proof of theorem 5.14, the number of intersections of two curves
can be calculated as an inclusion-exclusion calculation. This bears resemblance to a sheaf-theoretic
proof of the classical Bézout theorem (see [5]), which we have deliberately attempted to mimic
here, which proves that the number of intersections of two curves C,D on a surface S is given by

#(C ∩D) = χ(OS)− χ(OS(−C))− χ(OS(−D)) + χ(OS(−C −D)). (5)

It would be interesting to see whether equation 5 can be viewed as a sort of inclusion-exclusion as
well, and indeed whether there is a tighter analogy between these two arguments that might even
be able to be made precise.

We now consider some examples to illustrate the tropical Bézout theorem for some familiar
Newton polygons.

Example 5.18. Suppose that p(x, y) is independent of y. This describes a tropical plane curve that
is the disjoint union of several vertices lines. The Newton polygon is just a line of area 0. The
intersection of any two such curves is 0 (indeed, they can be pulled away from each other). On the
other hand, the intersection of two curves, one a set of horizontal lines, and one a set of vertical
lines, is simply de (d and e being the respective numbers of lines), as can be seen from computing
the area of the sum of these two segments. Of course none of this should be surprising.

Example 5.19. If p1, p2 are general polynomials of degrees d1 and d2, then their Newton polygons
are simple right triangles as shown in figure 5.19. The mixed volume we obtain in this case is
1
2(d1 + d2)2 − 1

2d
2
1 − 1

2d
2
2 = d1d2. This is of course the result we would expect, from the classical

Bézout theorem. This is illustrated in figure 17.

Example 5.20. Suppose p1, p2 are general polynomials of bidegrees (d1, e1) and (d2, e2). Then their
Newton polygons, as well as the sum of their Newton polygons, are rectangles. The mixed volume
is (d1 + d2)(e1 + e2) − d1e1 − d2e2 = d1e2 + d2e2. This is the result that we would expect for
intersections of algebraic curves on a P1 ×P1. This is illustrated in figure 18.
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Figure 17: The intersection of a conic and a cubic in the plane, and the calculation of the relevant
mixed volume.

Figure 18: The intersection of a tropical bidegree (2, 1) curve and a tropical bidgree (1, 2) curve.
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Example 5.21. As a final example, revisit figure 10, which has a comparatively nonstandard Newton
polygon. It intersects a tropical line in four points. It may be amusing to compute its intersection
numbers with various other types of tropical plane curves.

Before moving on, we briefly observe that the shape of the Newton polygon of a tropical plane
curve is sometimes referred to as its toric degree. Just as intersections of algebraic curves in
the projective plane are entirely controlled by degree, intersections of tropical plane curves are
controlled by toric degree. As we see from the proof of the tropical Bézout theorem, knowing the
toric degree is equivalent to knowing the portion of the divisor of x⊗iy⊗j that is supported at the
infinite points of the curve. As the name suggests, the toric degree of a curve described which toric
surface the (algebraic) curve most naturally inhabits. For example, curves with Newton polygons
that are right triangles naturally inhabit the projective plane, while curves with square Newton
polygons naturally inhabit the quadric surface P1 × P1. We shall not discuss any specifics about
toric surfaces in this article; a detailed account of this perspective can be found in [16].

5.5 Classical Bézout from tropical Bézout

One may well demand to know whether results such as the tropical Bézout theorem, or other
tropical analogs of classical questions, can bear on classical algebraic geometry, or if they must be
studied only for whatever independent interest they might have. In fact, there have been several
applications (one is discussed in the next section) of tropical plane curves to classical geometry; in
all such cases it is necessary to prove a suitable correspondence theorem. We illustrate one such
correspondence theorem by describing how the classical Bézout theorem can be deduced from the
tropical Bézout theorem (and more generally, the same correspondence can be used to calculate
intersections on any toric surface).

The correspondence theorem that we shall discuss is only a special case of the general theorem
that would be needed to prove Bézout: the case where the two tropical curves only meet at points
on the interior of their edges. Of course this will suffice to prove the classical result for general
curves, but the notion of stable intersection can be used to prove a more robust statement if
desired. We shall not give a complete proof of this theorem, but we attempt at least to indicate
the main points and the places where a complete proof becomes more technical. We have included
this incomplete argument mainly because we believe that it provides excellent intuition for our
notions of edge multiplicity and intersection multiplicity, by showing, at least in sufficiently general
situations, what they actually correspond to in terms of the original curves.

Theorem 5.22. Let C1, C2 be two plane curves over K, and let T1, T2 be their non-archimedean
amoebas in R2. Suppose that T1, T2 only intersect at points on the interiors of their edges. Then
each intersection of T1, T2 corresponds to the same number of intersections of C1, C2 as the inter-
section multiplicity defined in the previous section.

The idea behind this theorem is that the solutions in R2 can be bootstrapped back to solutions
over the Puiseux field by specifying them more and more and more closely (in the topology given
by the valuation). The necessary technical ingredient is the following generalization of Hensel’s
lemma.

Lemma 5.23. Let p(x, y), q(x, y) be two polynomials over a complete discrete valuation ring R, and
let p̄(x, y), q̄(x, y) be their reductions modulo the maximal ideal (as polynomials over the residue field

k). Suppose that (x̄, ȳ) ∈ k2 is a solution for p̄ and q̄, and that the matrix of derivatives
(
p̄x p̄y
q̄x q̄y

)
is
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nonsingular at the point (x̄, ȳ). Then there is a unique solution (x, y) ∈ R2 to the polynomials p, q
reducing to (x̄, ȳ).

Proof. This is (a special case of) exercise 7.26 in [10]. If David Eisenbud is allowed to leave it as
an exercise to the reader, then so am I.

For our purposes, R is the ring C[[t]], and k is C. Now, given an intersection point (u, v) of the
two tropical curves, we can assume without loss of generality that (u, v) = (0, 0) by first replacing t
by tk for k sufficiently large that u, v become integers, and then translating to the origin. Let us also
choose k sufficiently large that p, q have no fractional exponents in their coefficients. By rescaling p
and q by some power of t, we may also assume that the valuation that is achieved at (0, 0) is 0. Now,
reducing p and q modulo t will remove all monomials that are not tying for the maximum valuation
at the origin. The remaining terms have exponents in an arithmetic progression, as follows.

p̄(x, y) = c0x
iyj + c1x

i+ayj+b + · · ·+ cmx
i+mayj+mb

q̄(x, y) = d0x
kyl + d1x

k+cyl+d + · · ·+ dnx
k+ncyl+nd.

Here (a, b) and (c, d) are primitive integer vectors (i.e. the arguments of each have no common
factor) corresponding to the slope of the corresponding edge in the Newton polygon, while m,n
are the precisely the multiplicities of the two edges that are meeting at the origin. We require that
c0, cm, d0, dn are all nonzero, but the other coefficients may be zero.

Now, we are observe that this means that p̄, q̄ can be written in the following form, for r, s
degree m,n polynomials of one variable, respectively.

p̄(x, y) = xiyjr(xayb)

q̄(x, y) = xkyls(xcyd).

We are only interested in solutions where both coordinates are nonzero, since otherwise the
valuation would not be 0. Hence the number of solutions to this pair of equations in (C∗)2 is the
number of solutions to r(xayb) = s(xcyd) = 0.

Forgive us now for making an assumption: we shall assume that r and s have no multiple roots.
If this is the case then a straightforward calculation will show that the derivative matrix of p̄, q̄,
evaluated at any solution (x, y), will be nonzero so long as

∣∣ a b
c d

∣∣ 6= 0, which is simply means that the
two tropical edges in question intersect transversely. Hence each solution to r(xayb) = s(xcyd) = 0
will give exactly one point in the intersection of C1 and C2 over K. But r has precisely m roots, s has
precisely n roots, and for each of the mn choices (µ, ν) for (xayb, xcyd), choosing the actual values

(x, y) amounts to solving the equation
(
a b
c d

) ( log(x)
log(y)

)
=
(

log(µ)
log(ν)

)
. Of course, all the logarithms

are only well-defined modulo 2πi. The lattice of possible branches for the right hand side has its
area shrunk by a factor of the determinant (ad− bc) under the map

(
a b
c d

)−1
, hence the number of

possible solutions modulo 2πi is precisely (ad− bc).
Summing up, we see that the number of intersections of the curves C1, C2 that are send by

the valuation map to this particular point in the amoeba is precisely mn(ad− bc). Indeed, this is
precisely the suggested intersection multiplicity that is used in the tropical Bézout theorem.
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5.6 Enumerative geometry of tropical plane curves

We shall briefly describe in the section that work of Mikhalkin [19], which is an excellent application
of plane tropical curves to classical algebraic geometry. Recall the following invariants.

Definition 5.24. Let g, d be nonnegative integers. The the Gromov-Witten invariant Ng,d of P2

is the number of curves of geometric genus g and degree d in the plane through 3d+ g − 1 points.

The parameter 3d+g−1 is chosen to be the threshold where the family of such curves becomes
finite. A method for computing these invariants classically is described in [6]. Mikhalkin posed
and solved the corresponding problem for tropical plane curves. One wrinkle in the tropical case
is that one must assign each curve of the given genus and degree through the chosen points a
multiplicity, which is easiest to describe as the product, over all faces in the Newton subdivision,
of twice the area of each face (observe that for smooth curves, all faces are triangles of area 1

2 , so
the multiplicity is 1). However, if the curves are counted with these multiplicities, then the tropical
analogs of the number Ng,d are well-defined, and can be computed. In addition, Mikhalkin proved a
correspondence theorem, which demonstrates that the invariants Ng,d are equal for the tropical and
classical problems. The enumerative method proposed in Mikhalkin proceeds by consider lattice
paths in the Newton polygon, and thus gives a concrete, combinatorial approach to this enumerative
problem. In addition, the same method applies equally well to Newton polygons other than right
triangles, and in this way it provides a method for calculating the analogous invariants for any toric
surface.

The Gromov-Witten invariants had already been calculated by classical means. However, the
same enumerative techniques also suffice to compute the Welschinger invariants, which so far can
only be calculated by tropical means. The Welschinger invariants are analogous to the Gromov-
Witten invariants in real algebraic geometry, although so far they have only been proved to be
well-defined for genus 0 curves. The problem is this: given a parameter d and 3d− 1 general points
in RP2, how many rational curves of degree d, defined over R, pass through these points? This
question is ill-formed as it stands, because the number depends on the choice of points. However,
as the points vary, the solution curves are created and annihilated in pairs, hence the number of
solutions is well-defined if they are counted with an appropriate sign (just as intersection theory over
R must keep track of orientation, since there is no natural orientation as for complex manifolds).
The correct sign for a solution curve is (−1)m, where m is the number of nodes that occur in the
complexification of the curve that appear in the real plane as an isolated point (that is, that are
locally x2 +y2 = 0). Once the curves are counted with these signs, their number becomes invariant;
it is called the Welschinger invariant Wd.

Mikhalkin devises a means of calculating all Welschinger invariants and proves that it gives the
correct number for classical real algebraic geometry. In face, the enumeration method proceeds first
by finding all tropical solutions, but counting them with a different multiplicity than in the complex
case: if a curve was counted with multiplicity m for the Gromov-Witten invariant N0,d, then for
the Welschinger invariant Wd, it should be counted with multiplicity (−1)(m−1)/2 if m is odd, and
not counted at all otherwise. Intuitively, if m is even, then the tropical curve found corresponds
to an even number of complex curves, which annihilate each other in pairs when included in the
Welschinger count.
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6 Tropical curves via specialization

We now elaborate on the method described in subsection 2.3 for specializing a smooth curve to
a tropical curve. Throughout this section, R will be a complete discrete valuation ring with al-
gebraically closed residue field k and field of fractions K, and K̄ will be a fixed algebraic closure
of K. We will usually have in mind R = C[[t]], and K̄ the field of Puiseux series, although other
choices of R may be used to prove results in arbitrary characteristic.

The key results of this section are the specialization lemma 6.1, which translates between ranks
of linear series on tropical and algebraic curves, and theorem 6.7 from deformation theory, which
shows the existence of curves specializing to a given graph. In section 6.3 we present a recent
application of this method, and in section 6.2 we give the promised justification for our assertion
that tropical curves have a god-given canonical divisor within their canonical divisor class.

This entire section closely follows the exposition from [2]. Indeed, the reader is probably better
served by consulting Baker’s original exposition, but we shall describe it anyway.

6.1 The specialization map and specialization lemma

Let X be a smooth curve over K, and X a regular strongly semistable model with dual graph G.
We shall denote by XK̄ the curve X ×SpecK SpecK̄, and by Γ the metric graph associated to G by
assigning all edges unit length. Our first objective is the define the specialization map:

τ∗ : Div(XK̄)→ Div(Γ),

We prove that τ∗ preserves degree and effective divisors, and then prove the specialization
lemma:

Lemma 6.1 (Specialization lemma, [2]). For any divisor A on XK̄ ,

r(A) ≤ r(τ∗(A)). (6)

We begin by defining a map ρ : Div(X) → Div(G), as follows. Because X is smooth and X is
regular, Weil divisors are the same as Cartier divisors, hence we can make use of the intersection
theory of arithmetic surfaces, which is described in [17].

Definition 6.2. Let C1, . . . , Cn be the irreducible components of the special fiber, corresponding
to vertices v1, . . . , vn in G. For any divisor A ∈ Div(X), let A be the closure of A in X. Then:

ρ(A) =

n∑
i=1

(Ci.A)vi. (7)

The map ρ is degree-preserving, preserves linear equivalence, and preserves effective divisors.
We omit the details, which follow from intersection theory on arithmetic surfaces; see [2] for further
discussion.

In order to construct a map from the divisor group of XK̄ , we must understand the behavior
of this apparatus under field extension. The key facts are the following two lemmas, whose proofs
we omit; further details can be found in [2], which in turn relegates the technical facts about dual
graphs and base change to [7].
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Lemma 6.3. Suppose that X is totally degenerate. For a finite extension K ′ of K, with R′ the
integral closure of R in K ′, there is a unique relatively minimal totally degenerate strongly semistable
model X′ dominating the fiber product X ×SpecR SpecR′. The dual graph G′ of the special fiber X′k
is given by subdividing each edge of G into a path of length e, where e is the ramification index of
K ′/K.

Hence, we may regard both G and G′ as giving rise to the same metric graph Γ, if the edges
of G′ are taken to have length 1/e. This suggests that we should be able to define a single map to
Div(Γ), valid for all field extensions. This is almost true.

Lemma 6.4. The map ρ′ : Div(X ′) → Div(Γ) agrees with ρ for divisors which are finite sums of
points defined over K. For an arbitrary divisor A on X corresponding to divisor A′ on X, ρ(A)
and ρ′(A′) are linearly equivalent on Γ.

To get some idea why ρ and ρ′ do not agree on all divisors, recall that the divisors of X can be
identified with Gal(K ′/K)-invariant divisors on X ′. Hence in passing to a field extension, a single
divisor may split into a sum of Galois-conjugate divisors, whose images in Div(Γ) may be supported
on points that are not vertices of G, but are created in G′ by the subdivision. Forunately, the result
is the same up to linear equivalence.

Given this apparatus, we are able to define the map τ∗.

Definition 6.5. Let τ : XK̄ → Γ send a point p defined over some extension K ′ of K to the vertex
of Γ corresponding to the intersection of the closure of p in X′ with the special fiber. Let τ∗ be the
induced map Div(XK̄)→ Div(Γ).

Now that we have established the definition of the specialization map, one technical detail
is needed in order to prove the specialization lemma. The issue is that the image of τ∗ is not
all of Div(Γ); it is only those divisors supported on points of rational distance from the vertices.
Fortunately, this does not change things.

Lemma 6.6. Let Γ be a metric graph with integer edge lengths. For A ∈ Div(Γ) supported only on
rational points (points of rational distance to all vertices), let rQ(A) be defined the same way as r(A),
except that we only subtract effective divisors supported on rational points. Then rQ(A) = r(A).

Proof. This is corollary 1.5 from [2], which refers to a rational approximation argument found in
[12].

Proof of the specialization lemma. Suppose that r(τ∗(A)) < n. Then there exists an effective divi-
sor E of degree n, supported on rational points of Γ, such that τ∗(A)− E is not equivalent to any
effective divisor. Then there exists an effective divisor F of degree n on X such that τ∗(F ) = E.
But then A − F cannot be equivalent to any effective divisor, since otherwise its image under τ∗
would be equivalent to an effective divisor. Thus r(A) < n as well. The result follows.

In practice, it is difficult to actually construct models X. Fortunately, for many applications
one does not have to: the following lemma from deformation theory ensures the existence of models
specializing to any chosen graph.

Theorem 6.7. For any connected graph G and complete discrete valuation ring R with infinite
residue field k, there exists a curve X with totally degenerate strongly semistable regular model X
over R whose special fiber has dual graph G.
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Proof. This is the subject of appendix B to [2].

The specialization lemma and theorem 6.7 constitute a technical apparatus that allows theorems
about algebraic curves to be proved by purely combinatorial means. We shall see an example in
section 6.3.

6.2 The canonical divisor of a graph is canonical

The definition of the canonical divisor of a tropical curve in section 3 was entirely unmotivated,
aside from how conveniently it served as a dualizer in the Riemann-Roch theorem. However, we
certainly must wonder whether the divisor itself (and not just its class) is truly canonical. However,
specialization provides a succinct explanation for why we should prefer this particular divisor.

Proposition 6.8. Let X be a totally degenerate strongly semistable regular model for a curve X,
and let G be the dual graph of the special fiber. Then for any canonical divisor K for X, the image
of the restriction of K to X under the specialization map is the canonical divisor of Γ, as defined
in section 3.

Proof. The proof is a straightforward intersection theory calculation. Let C1, . . . , Cn be the ir-
reducible components of Xk, corresponding to vertices v1, . . . , vn in G. Then by the adjunction
formula for arithmetic surfaces (see [17]),

L(KCi) = L(K + Ci)|Ci
deg(KCi) = K.Ci + Ci.Ci

Now, deg(KCi) = −2 since Ci has genus 0. To calculate Ci.Ci observe that Ci.(C1+· · ·+Cn) = 0
since the latter is a fiber of the family and the former is contained entirely in a fiber. Also, Ci.Cj
is 1 if there is an edge between vi and vj , and 0 otherwise. Hence Ci.Ci = −val(vi). Therefore,
by definition 6.5, the coefficient of vi in the specialization of K to G is K.Ci = val(vi) − 2, and we
obtain definition 4.4 of the canonical divisor of a graph (or tropical curve).

It is worth noting that it is not the case that every canonical divisor on X specializes to the
canonical divisor on G (although it must always specialize to a divisor in the canonical class). This
is because a canonical divisor on X may not have a canonical divisor on X as its closure.

We briefly remark that one intriguing consequence of this is that while ranks of divisors may
jump during specialization (Baker provides several examples in [2], involving modular curves,
demonstrating that the inequality in the specialization lemma can be strict), the ranks of divisors
summing to a canonical divisor will always jump by the same amount, since the Riemann-Roch
theorem holds both for the curve X and the tropical curve Γ.

6.3 A tropical proof of the Brill-Noether theorem

We conclude this article with a brief description of a recent and exciting application of tropical
techniques to classical geometry: it has recently produced a new proof of the Brill-Noether theorem
in all characteristics. This theorem was originally prove by Griffiths and Harris [13].
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Theorem 6.9. Let X be an algebraic curve of genus g. For integers r, d, let W r
d (X) be the

scheme of divisor classes in Picd(X) which move in a linear series of dimension at least r. Let
ρ = g − (r + 1)(g − d+ r). Then if X is a general curve:

1. If ρ < 0, then W r
d (X) is empty.

2. If ρ < 0, then the dimension of W r
d (X) is min(ρ, g).

The fact that min(ρ, g) is a lower bound for the dimension of W r
d (X) is not difficult, and has

been known for a long time. That g is an upper bound is trivial, since g is the dimension of the
Jacobian. Thus, due to semicontinuity of W r

d as X varies and the irredicibility of the moduli space
of curves, the difficult aspect of the theorem is showing existence. In particular, it is necessary to
show that for ρ < 0, there exists some curve X with no r-dimensional degree d linear series for part
1. For part 2, if ρ ≥ 0, it sufficed to show the existence of a curve X and an effective divisor E of
degree r + ρ + 1 on X, such that there are no linear series of rank r and degree d containing E.
The existence of both of these types of curves will prove the Brill-Noether theorem.

Theorem 6.7 and the specialization lemma reduce this existence problem to pure combinatorics:
if a metric graph Γ with integer side lengths can be constructed such that it does not have any
linear series of the type described above, then, in all characteristics, we can be assured that some
curve degenerates to Γ via specialization, and hence proves the necessary existence statement.

In a recent paper [8], Cools, Draisma, Payne, and Robeva construct such a family of metric
graphs. The graphs they consider have g + 1 vertices v0, . . . , vg, and 2g edges: on of length li and
one of lenght mi between vertices vi−1 and vi. The main result of [8] is that for the lengths li,mi

chosen away from some collection of hyperplanes, Γ does not support and linear series of the types
that we wish to exclude. What is remarkable about this paper is that the argument is entirely
combinatorial, once one takes for granted the admittedly technical black boxes of specialization
and deformation theory.

An intriguing question remains in this line of study, namely of the enumerative problem for
ρ = 0. By the Brill-Noether theorem, the number of linear systems of rank r and degree d is
finite when ρ = 0, and the number of such systems has been calculated. One can ask the analogous
question for metric graphs of the family consider in [8], and the same number is obtained. However,
unlike in the case of the Gromov-Witten and Welschinger calculations in [19] (discussed in section
5.6), it is not known whether this equality is an accident. Put differently, it is not known whether
there is a bijection between thus systems on the curve and the graph, or if this equality is purely
a coincidence due to all relevant terms canceling (see [8], conjecture 1.5).
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