Note: Due to the midterm on Friday 10/5, this assignment is slightly shorter than usual. I recommend spending some time working reviewing old problems, working the “suggested” problems from earlier sets, and making sure you understand the theorems and proofs from class.

Read: The rest of §8.

Suggestion: Work (or think about) the following problems. Problems marked with a * have answers given at the back of the book.

- §8 : 3*, 5, 10

1. (a) Let \(f \in S_n \) be the cycle \((x_1, x_2, \cdots, x_r)\). Show that \(o(f) = r \).

(b) Suppose that \(f = (x_1, x_2, \cdots, x_r) \circ (y_1, y_2, \cdots, y_s) \). Assume that these are disjoint cycles (that is, \(x_i \neq y_j \) for all \(i, j \)). Prove that the order of \(f \) is the least common multiple of \(r \) and \(s \).

(c) Find two transpositions whose product has order 3. This shows that the “disjoint” hypothesis is essential in part (b).

For the next two exercises: Read the statement of Saracino exercise 8.10(a). You may use this statement without proof (but it is a good review exercise to prove it yourself).

2. Determine the largest possible order of an element of \(S_9 \).

3. Does \(A_6 \) have an element of order 6? Does \(A_7 \)? If so, give an example. If not, prove that it is impossible.

4. Suppose that \(H \) is a subgroup of \(S_n \). Prove that either all elements of \(H \) are even permutations, or exactly half of the elements of \(H \) are even permutations.

 Hint: Mimic the proof from class on Friday 9/28 that exactly half of the elements of \(S_n \) are in \(A_n \).

5. Read the description of the dihedral group \(D_n \) of order \(2n \) in Saracino Exercise 8.15. Solve parts (a) and (b) of that problem (check your answer to (b) in the back of the book).