Let R be a commutative ring with 1_R, and $a \in R$.

- $\langle a \rangle = \{ ar : r \in R \}$ the principal ideal of a.
 - Review: why is "commutative" & "with 1_R" important here?
 - An integral domain where every ideal is principal is a **PID** (principal ideal domain).
 - $a, b \in R$ are **associated** if $\exists u \in R^* \text{ st. } a = bu$.

- If R is an integral domain, then
 - a & b are associates iff $\langle a \rangle = \langle b \rangle$.
 - Review: why did I stipulate "integral domain?"

- a is called **irreducible**
 - if $\forall b, c \in R$ whenever $a = bc$, either b is a unit or c is a unit.
 - (so either b or c is an associate of a)

- a is called **prime** if
 - whenever $a \mid bc$, either $a \mid b$ or $a \mid c$.
 - Review: if R is an integral domain, then prime \Rightarrow irreducible.

- a divides b, written $a \mid b$,
 - means $\exists q \in R \text{ st. } b = aq$.
 - This is equivalent to saying $b \in \langle a \rangle$.
\[R \text{ is a unique factorization domain (UFD) if} \]

1) \(R \) is an integral domain,

2) For all nonzero & nonunit \(a \in R \),

\[\exists \text{ irreducibles } p_1, \ldots, p_l \text{ st. } a = p_1p_2 \cdots p_l, \]

3) If \(p_1, \ldots, p_l \) & \(q_1, \ldots, q_m \) are irreducibles with

\[p_1p_2 \cdots p_l = q_1q_2 \cdots q_m \]

then \(l = m \) & after possibly reordering the \(q \)'s,

\(p_i \) & \(q_i \) are associates for \(i = 1, 2, \ldots, \).

Goal: prove that \(\mathbb{Z} \), and \(\mathbb{Z}[\sqrt{-1}] \) are UFD's.

(we'll see a few more soon)

Strategy: We'll prove that every PID is a UFD, as follows:

1) Prove that all irreducibles are prime.

2) Prove that prime factorization is unique.

3) Prove that factorizations exist in PIDs.

Then we'll prove that \(\mathbb{Z} \) & \(\mathbb{Z}[\sqrt{-1}] \) (& others) are PIDs.