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1. [6 points] Let R be aring, and I an ideal in R. Prove that the quotient ring R/I is commutative
if and only if zy —yx € I for all z,y € R.

Suppese—RIT i
Given  wyeR, ohauwe that

I+ & THy  commube in RIT

i (T+T+y = (T4y) (T

i [ T4xy = T+yx (dehs of mulk.
in IT)

£ Xy-yx eI  (tosh oniterim),

Henee RIT n aommubediv
= V[Y(Lj R, Txx & T+y covnmube

=) ¥xyeR, xy-yxeT,

ar devited.
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2. (a) [4 points] List all the elements of the symmetric group S3, using notation of your choice.

uwa o

d
Y
SPU?;?QM,;?(ZS lLs‘j (lJZ) ) Kl;.?)), (2..3),
$nom PSeH) '
(.23 (4,32).

(b) [4 points] Which elements from part (a) are in the alternating group 437

oven o dpgy (123) (132),

{c) [4 points] Let f = (1 2 3). Determine the centralizer Cs,(f) of f in S3.

(Recall that the centralizer of f is the set of all elements of the group that commute with

1)

(L2304 = 02y & mlad= 02 = ;e Cl)
(202 = (L3 & (W0Z3)= (23) = 02 ¢ CH)
nzRlo3y = (23) & UMG23) = (1L2) = (WD ¢CH)
(23) (2= (12) & @23 =03 = (13) ¢ Cl)

(L23) (BT commutes wf ituls =y (L3} eCH)

123) 032)= 1 & (320231 = U3 el

So Colf) = {1m, 0:23) (13,2 (aka. 48), aka As)

elbonckequit o gument - w},({:);C(F) & FRIC(H] in 123,006 (Lamang)
10 1K= & ClEI# G [sinte WD ELLE) impliv CE)=¢HY
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3. Let ¢ : R — S be a ring homomorphism.

(a) [4 points] Define the kernel of ¢, denoted ker ¢, and prove that it is an ideal.

enp = {ae R (@) =0s],

nonemphy: @ (0R) = Os

(popestyy of aing hown.)
s Op ¢l

closungund - :

Suppose a,h € ke,

Then (_p[a—\o\ = LP(G\*LPU)) ([Vlopurlybfninghomj

= 0-0s  (abe lerg)
= 0O
W a-b el
&Wae kerp & reR, then
wlan = clal el
= O @lr)
=
2 clral= ) pla)

= L@(\'\- Dy
=0s

(defr of ning hom.)

Wnu or el b taclwmw ie lw b gk.c,luj
pﬂ mDVdJ n C\OM/ +M thnee mUWﬂ"TM (continued on reverse)
mply +hat e » an i dedl.
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(b) [5 points] Assume that R is a commutative ring with unity, and S is an integeral domain.
Prove that either ker ¢ = R or ker ¢ is a prime ideal.

{Recall: An integral domain is a commutative ring with unity with at least two elements
and no zero divisors. A prime ideal is a ideal I # R such that for all ¢,b € R, if ab & I
then either a € I or b € I, or both.)

L Quppor that  kn =R and  ka is not paime.
Thew 2 abeR . abeluuw bub adhud &b dhup

Then "P[O'M = (g (Adeds of leerce)
=y wlel)=0s (@ba hom)

Now cpla) g olh) am nonzmosince a,b dlee.

solh)  ane
Thw @la) +—& sei0-diviions .

Ru- § »an inteepd Adomam, so ithas no
wodwisw; ths u a combcdicHm. %

Henee eithen ke =R e ke 0 pume,
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4. Suppose that G is a finite group, and g € G is an element of order 9.
(a) [4 points] Prove that |G| is divisible by 9.

[l = olg)=a, 2 (@ ¢ G
So by Lapanges thm, allal.

(b) [5 points] Prove that for all integers n, g* = e¢ if and only if 9 | n.

Suggestion: For the “only if” direction, use the division algorithm for Z.

Ny Supsc thet g'=eq Ry dvidp 7, Jased
o 0s7<Q & wn= Qg
Thus eq'= 9" = (QQ)C{'_QF: eq%.gr
_—.9‘“_
Now sinte gf=gg & rt<old), ©cant hepostine
(olg) D the miaimum pusitive {nkegu m sh g"M=ec).
Hence t=0 & n=9q . henee  Qln.

=" Suppos GIn. Then n=Qq +oome qeZ
ThM 9“ = (qu% -:.-_eél: eq .

(continued on reverse)
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(c) [3 points] Determine o(g?) and o(g®).
(.q"" m: g =) q l 2 m
(= gqlm (cne qdl2,4)=)
o the smatlab sigb m s 4
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5. Let R=Z x Z, and let I = {(2m,3n) : m,n € Z}.
(‘S‘UQW (a) [4 points| Prove that I is an ideal in R.
blem

F):)s.\-Z“-F«om
P 1) nonemgty:  (0,0)€X (L =0, n=0).

closefundhr= : FOr aing 4w elements (Zm3n) & (' 3n) ¢ I,
(Zm,Zn] - (’Zm‘,?m‘]

= (2tn-m) , 3ln-n)
= (Qm“, ) whae wm'sm-m Entz=n-n'
e L.
chiduiness - Focany (madeT & " E.TZI

(a9 (Zm.3n) = (@m3n)lah) = (Zaw, 3hon)
""(zm\,'ﬁn‘) who m=am & h'=bn,
e I’

o0 I ip tHcly,

Hente T o anided.

{continued on reverse)
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(b) [2 points] Is I a principal ideal? Briefly justify your answer.

\1@ I = { {213)(“4*”) oy E‘_l—}
= {23) ¢ reLNT]
= (@3

(c) |2 points] Is I a prime ideal? Briefly justify your answer.

No L) & (2 ¢ T,
bu\* (lig) (Zl\) = (ZIIK)C—I_

{d) [2 points] Is I a maximal ideal? Briefly justify your answer.

No

becaunt i H‘ WeAL waax |

i+ would oo by pnim(,

(pioved in clou in o (R wltl,
mostt = prime),
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6. Let G be a group, H a subgroup of G, and g an element of G. Define

(MO”‘I {mb K =gHg '={ghg”': he H}.

2621, fom
Pk ‘-ﬂ (a) [4 points] Prove that K < G (K is a subgroup of G).

nonemm‘q , eGG H (B isa subcpoup)
o ge,y = 94'=6c €k

closwu ureln_mult .
T any twe gmnts ghg’ & gheg” el
(whw ht, hl GH),

(ghg") (gheq") = ghi(g'g) he g
= g(hlh!.) g-‘
g hihe €H sinte H D@ subgroyp (hente closect unclumult)

so this podud is io gHqg' =K.

C.lDJU/K un;[,m invew Fm C(n/-j 9 hg-—l c K‘

(ghg)" = (g1

= 3 '()—‘5—‘
7 pen (H o costd under inverse)
s  (ghg) ek

Hente K » a subguoup of G.

(continued on reverse)
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(b) [4 points] Prove that X = H.
Pefine
@ H— KK
by —

This s a group homomes phism sne
plhh) = ghihg”
= ghl 9.-'9 h-g 60-.\
= LP(hl)LQ “’12) _
@ o swjecke glace

k€, W= ghg' for some
heh, w k= plhl

W B injecHw sink ¥ hi, by @ H,
0 (h)= @]
2 ghig' = ghg”
= g'ghdlg = g'lghdlg
= egh e
= hi =he,

So @ v a bijechue ooup hormomorphiom, 1e. a
qloup isomoiphim.  Hente 7 H =K

= @q l’\LeG
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7. Let F be a field, and let F[X] denote the polynomial ring over F.

(a) {4 points] Prove that F[X] is an integral domain. ‘Y« amtume FOXT is
com#azw. wllnity,

Recall thek  VplW) = Op , cﬂﬂq((’()ln %0,
(by convenhion, doy (Op)=- o)
g Yot aql ¢ Fly,

doa [ PO )] = deg (p00) + deg(a(x).

(Wher = s =0, by conunbion] |
So ik p00), ald # Op,
then  deg(phiqta) = doq (pla) +dea g (] 50

£ in parhculon aﬁeq[pl\a)),&q(q () #-¢n,
ve. o, qlW =# Or.

S B[] hon vo se10-divissy.
v F[\Q W G comm. ping vl am% A has

no mo»&\'\!iwﬂ, 0 it i oan imLPtpd domain.

(continued on reverse)
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(b) [4 points] Let I = (X2 + 1) denote the principal ideal generated by X2+1 in F[X]. Prove
that every element in the quotient ring F[X]/I is equal to I + (a + bX) for some choice of
elements a,b € F.

leb T+p) e FOA/T.

By he divsisndlye o FUS,

Jqlo, () € FOT wl dogliba) < dg (XS] =
Lopl) = gl (W) +eln.
Sinte degily) <1, ey = aMtb fwtome a,beR

Now, px) —(aX W) = g (v) () e (X1
so by the coset onitentom,
T4+plk) = T+ (aXsh),
[8))) &lli/.‘u'feoL

(c) [4 points] Let I be as in part {(b). Prove that if a,b € K satisfy a2 + b% # 0, then the
element I +a+ bX € F[X]|/] is a unit in F[X]/I.
Hint: mimic the way that inverses are computed in C or Q[v/—1).

Observe thak
(T+arb%) - (T+ a-by)
=T+ (aﬁah\( &b X 3%
= T+(a*bX)
= T+lanbhY) byt cosk onituni on

((a*\o‘) (™5 = B

£t #Dg, = (143 bt € QD).

& cinte Fis a field, 3 (a%v)'eF

Hence (T4 avyby) [I+ (LY ( k\()] = 1+7]
£ v T+aihd & aunik in FIXT/T.
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8. [6 points] Let R be an integral domain. Prove that if p € R is a prime element, then p is also
an irreducible element.

(Recall: An element p € R is prime if it is nonzero, it is not a unit, and for all a,b € R such
that p | ab, either p | a or p | b. An element p € R is irreducible if it is nonzero, it is not a unit,
and for all a,b € R such that p = ab, either a is a unit or b is a unit.)

Suppow P is @ ime elemenhty  and
P-—-ab for some abeRrR

Then P\ab (ab= ple), 50 either pla o1 plh

Suppese Bt et pla
Then 3ceR b a=pc 3o

p= ab = PCb

=5 P[l—cb\= Or.
i+ » ntho 'wv-a‘whw sinte Ris an

iﬂ'}'é’ged domal‘n.
Thuws 1-ch=0r , ic.  1=¢h.
Thnede b u a unit  (B'=cl.

Simonly lexdnangng  adlb i Hae panagnGph aboue),
it plb +he a 11 & uni k.

Sinte p#0w,

Henee eithen a o aunk ob s o unit.

Combingd w| the factthat oo nongero & nonunik ( past
ohthe defr ob “prime element”) o i cun inreducihle element:
a duited.
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9. Suppose that G is a group, and H is a subgroup of Z(G).
(a) [4 points] Prove that H is a normal subgroup of G.

H ¢2(6) ¢6 , 0 HEE,
H<¢Z2(6) » B clowd unds mulk & mvenr & nommplj
=y H U« wbq/)aap of G as well.

Now, VheH Vge#h h &g commuk sdace

he Z2LG), so

-

ohd| = hag
‘-‘)’)QG
=h e

So ghg'eH. Tho shows H 4G
on OLW_)IG?A-

/

(continued on reverse)
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(b) [6 points] Suppose that the quotient group G/H is cyclic, with generator Hg. Prove that
G is abelian.

Hint: First show every element z € G is equal to hg™ for some h € H and integer n.

Foc any  xe6,

Hy e (Hg)  (ine Hy guucty
G/H)

=) Jnel b Hx = (Hg)"
o = Hg"

= xg"eMd (st o Ferion
=y Ihe ¢ xg=h =T x=hg"

Now, Vx4 €6 the abowe shows that A hkeH & mneZ
st x=hg™ & y=lg”.

Then X‘ﬁ - hglﬂ’![cg”

o hle gmghf(smce e Z (€l

=)l b 4™ commute)
= |.h QW‘ « (gne wik commute)

It

- khg'g™  (evponent (awd
=\l ¢" hg™ (\n Lg" commudc)
WX

S0 Ccl/\oj%wo e\emm{-& B‘EG CUle‘nque, e, G
it abeliga
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(c) (Bonus; up to 2 points of extra credit. I don’t recommend spending time on this unless
you've completed the rest of the exam!)

Prove that if G is a group of order p, for p a prime number, then g? € Z(G) for all g € G.

Abbaeviak 2(G) by 2 beow.
X Fush cbsave that ofeZ & ZoP=2e in GI2
(coseh oriferion)
& (29) =2,

So we will analyse osduws of eluminh in 52 (2 4G by paut (al)

Lwe By Lapang, [Zl=1,pp% 0a p’,

WA» gnoucﬂ in clam, p[l%l whin [G] & a powosm?
apine §, 3 [Z{=#]

coml: |2l=p. Thmn [G]z] =P1'_ Sinee 236, G bt abelicy,

By (M contngposiheof] part (b, G2 i ne eypelte,
o no elment has o1ds pt S ol elimends hawe oide L osp,

ne (24 =2¢ Wged, o duiced.

o 2+ \2l=po |
C we gmifa( in clons Fhat Hhis is impossibe

(i V9%, Z<Cals) <G).
Bub puen ifitwe, itwodd jmply 16 (2= p.
o b, a ool d Lapange (Zq)0=Ze Vet

com3: [2[=P3_
Thin G & abeliont, sv allelinunh ouinm 2.

In all caus, we see that o(Zg)=1or P ¥&4¢ Gz
which gwos%t/lqu%
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