- **Read:** §11.
- **Suggestion:** Work (or think about) the following problems. Problems marked with a * have answers given at the back of the book.
 - $\S{11}: 2^*, 3, 14^*$
- 1. Recall that $SL(2,\mathbb{R})$ denotes the subgroup of $GL(2,\mathbb{R})$ consisting of all 2×2 invertible matrices with determinant 1. Prove that $SL(2,\mathbb{R})$ is normal in $GL(2,\mathbb{R})$.
- 2. Prove that the intersection of any two normal subgroups in a group G is also a normal subgroup.
- 3. Suppose that G is a group, and N, H are subgroups with $N \triangleleft G$. Prove that the set

$$NH = \{nh: n \in N, h \in H\}$$

is a subgroup of G.

- 4. Suppose that G is an abelian group, and H is a subgroup. Prove that G/H is abelian.
- 5. Suppose that G is a group of order 21, and $g, h \in G$ are two elements of G such that o(g) = 7, o(h) = 3, and $hg = g^2h$. It follows from these assumptions that any element of G can be written uniquely as g^ih^j for some $i \in \mathbb{Z}_7$ and $j \in \mathbb{Z}_3$ (you may assume this without proof, but you may find it interesting to think about why; ask me if you are interested).
 - (a) Compute each of the following elements. Express each answer as $g^i h^j$, where $i \in \mathbb{Z}_7$ and $j \in \mathbb{Z}_3$.

$$(gh)^2$$
, $(g^4h^2)(g^3h)$, $(g^3h)^{-1}$

- (b) Prove that $\langle g \rangle$ is a normal subgroup of G, but that $\langle h \rangle$ is not.
- (c) Show that $G/\langle g \rangle$ is a cyclic group of order 3.

Comment: this description of G is very similar to our description of the dihedral groups D_n . Indeed, both are examples of a construction called a *semi-direct product*.

6. Let G be a group. Given any two elements $a, b \in G$, the *commutator* of a and b, denoted [a, b] is defined to be

$$[a,b] = aba^{-1}b^{-1}.$$

- (a) Prove that G is abelian if and only if for all $a, b \in G$, [a, b] = e.
- (b) Prove that for a normal subgroup $H \triangleleft G$, the quotient group G/H is abelian if and only if $[a, b] \in H$ for all $a, b \in G$.
- 7. Consider the quotient group $C = (\mathbb{R}, +)/(\mathbb{Z}, +)$.
 - (a) Prove that for every integer n, there exists an order-n subgroup of C.
 - (b) Prove that if $x \in \mathbb{R}$ is irrational, then the element $\mathbb{Z} + x$ of C has order ∞ .
 - (c) (Bonus; for extra credit) Prove that any finite subgroup of C is cyclic.

Comment: the notation $\mathbb{Z} + x$ gets a bit clunky to write over and over again. You may prefer to instead use the "overline" notation \overline{x} (as used in Chapter 9) for the coset of x.

- 8. Let G be a group, and Z(G) denote the center of G (the set of all elements that commute with every element of G). Prove that if G/Z(G) is a cyclic group, then G is abelian.
- 9. Suppose that G is a group, H is a normal subgroup of G with |H| = 7 and [G : H] = 20. Lagrange's theorem implies that if $x \in H$, then $x^7 = e$. Prove the converse: if $x \in G$ satisfies $x^7 = e$, then $x \in H$.

Hint: use the quotient group.