Supplement to problem set 8

(Concerns material from $\S4.3$)

- 1. Suppose that $T: V \to V$ is a linear operator. Prove that T is injective if and only if T is surjective.
- 2. Suppose that $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are vectors in a vector space V, and $T: V \to W$ is a linear transformation to another vector space W.
 - (a) Suppose that $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent and T is injective. Prove that $T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_n)$ are linearly independent.
 - (b) Suppose that $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ span V, and that T is surjective. Prove that $T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_n)$ span W.
 - (c) Deduce from (a) and (b) that if $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ is a basis for V, and T is an isomorphism, then $T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_n)$ is a basis for W.