Name: ________________________________

- The time limit is 50 minutes.
- No calculators or notes are permitted.
- For any problem asking you to write a program, you may write in a language of your choice or in pseudocode, as long as your answer is sufficiently specific to tell the runtime of the program.
- Each problem is worth 10 points.

<table>
<thead>
<tr>
<th></th>
<th>/10</th>
<th>2</th>
<th>/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>/10</td>
<td>4</td>
<td>/10</td>
</tr>
<tr>
<td>5</td>
<td>/10</td>
<td>6</td>
<td>/10</td>
</tr>
<tr>
<td>(\sum)</td>
<td></td>
<td></td>
<td>/60</td>
</tr>
</tbody>
</table>
(1) (a) Find integers u, v such that $91u + 74v = 1$.

(b) Find an integer x such that $74x \equiv 5 \pmod{91}$.
(2) Alice and Bob are performing Diffie-Hellman key exchange using the following parameters.

\[
\begin{align*}
p &= 19 \\
g &= 2
\end{align*}
\]

(a) Alice chooses the secret number \(a = 3 \). What number does she send to Bob?

(b) Bob sends Alice the number \(B = 4 \). What is Alice and Bob’s shared secret?
(3) Alice and Bob are using the ElGamal cryptosystem, with the following parameters.

\[p = 13 \]
\[g = 7 \]

(a) Alice chooses the private key \(a = 2 \). What is her public key, \(A \)?

(b) Suppose that Alice receives the ciphertext \((c_1, c_2) = (2, 6)\) from Bob. What is the corresponding plaintext?
(4) Suppose that p is a prime number at most n bits in length, and a is an element of $(\mathbb{Z}/p\mathbb{Z})^\times$. Write a function `inverse(a, p)` which takes the integers a, p as arguments and returns the inverse of a modulo p. For full points, your function should perform at most $O(n)$ arithmetic operations, and the return value should be an integer between 1 and $p - 1$ inclusive.
(5) (a) Let p be a prime, and $a \in (\mathbb{Z}/p\mathbb{Z})^\times$. Define the order of a modulo p.

(b) Let $p = 2^{16} + 1$ (this number is known to be prime). Prove that for any $a \in (\mathbb{Z}/p\mathbb{Z})^\times$ except 1, $\text{ord}_p(a)$ is even. You may use any facts proved in the class or on the homework.
(c) Suppose that $p = 2^{16} + 1$, as in the previous part. What is $\text{ord}_p(2)$?

(d) Suppose that p is a prime with the property that $\text{ord}_p(a)$ is even for every $a \in (\mathbb{Z}/p\mathbb{Z})^\times$ except 1. Prove that $p = 2^n + 1$ for some integer n. You may use any facts proved in the class or on the homework.
(6) Alice and Bob have chosen parameters p, g (p is a prime, $g \in (\mathbb{Z}/p\mathbb{Z})^*$) for Diffie-Hellman key exchange.

On Monday, Alice sends Bob the number A, Bob sends Alice the number B, and they establish a shared secret S.

On Tuesday, Alice sends Bob the number A', Bob sends Alice the number B', and they establish a shared secret S'.

Eve intercepts A, B, A', B' (as usual), and she also manages to steal the first shared secret S from a post-it note in Bob’s trash Monday night. Suppose that she also discovers the following two facts (possibly resulting from lazy random number generation by Alice and Bob).

$$A' \equiv g^2 A \pmod{p}$$
$$B' \equiv B^2 \pmod{p}$$

How can Eve can use this information to efficiently compute the second shared secret S'?
(additional space for work)