Problem Set 8 Math 252, Spring 2020

Written problems

1. Textbook exercise 3.10 (finding a deciphering exponent can help factor a modulus)
2. Textbook exercise 4.2 (RSA signature examples)
3. Textbook exercise 4.6 (ElGamal signature examples)

4. Textbook exercise 4.7 (ElGamal “blind signatures”)

Programming problems

1. We’ve discussed in class the need for choosing primes p such that p—1 has a large prime factor.
It is also considered a good idea to ensure that p+ 1 also has a large prime factor (for reasons
we won’t discuss). In this problem, you will write a function strongPrime(gbits,pbits)
to construct such a prime. You will be given integers gbits and pbits, and should return
3 prime numbers q1, g2, p such that both ¢; and ¢ are at least gbits bits long, p is exactly
pbits bits long, and such that ¢; | (p — 1) and ¢2 | (p + 1). As with last week’s makeQP
problem, I recommend choosing the subordinate primes q1, g2 first, and using these to narrow
the search for the last prime p.

2. This problem concerns a modular arithmetic problem that we have not yet considered, but
which is important to the last programming problem. You will be given integers m, b, and N,
and your goal is to solve the congruence ma = b (mod N) for x. When m is relatively prime
to N, this is accomplished by multiplying by the inverse of m; you should figure out how to
solve such a congruence in cases where m may have common factors with N. It is possible
that no solutions exist. If solutions exist, they can all be described in a single congruence
x =r (mod M), where r, M are integers and M is not necessarily the same as N. Write a
function linearCong(m,b,N) that either returns None if no solutions exist, or returns a pair
(r,M) describing the general solution if solutions do exist.

Hint: re-write the original congruence as an equation with one more variable, and try to
convert it to a congruence (possibly with a different modulus) in which the coefficient of z is
invertible.

3. When using ElGamal digital signatures, it is essential that Samantha always generates her
ephemeral key at random (much like in ElGamal encryption). In this problem, you will study
why it is particularly dangerous to use the same ephemeral key twice. You will be given the
public ElGamal parameters p,g, Alice’s public key A, two documents d1,d2, and valid sig-
natures (s11,s12), (s21,s22) for the two documents (respectively). The two signatures were
generated using the same ephemeral key. Write a function extractKey(p,g,A,d1,s11,s12,d2,s21,s22)
that extracts and returns Alice’s private key a from this information.

Hint: if you carefully manipulate the two congruences Samantha used to sign the documents,
you can derive a congruence of the form ma =b (mod p — 1), where m and b are values you
can compute and « is the private key that you are trying to find. Unfortunately, it is possible
that m is not invertible modulo p — 1. You can use the solution to the previous problem to
“solve” this congruence to obtain a congruence that may not determine a uniquely; you’ll
need to figure out how to get from here to the specific value of a.

due Wednesday 4/8 by 10pm. page 1 of

