
Problem Set 6 Math 252, Spring 2020

Written problems

1. Evaluate the discrete logarithm log40 33 in Z/73Z using the Pohlig-Hellman algorithm, ac-
cording to the following steps (see the statement of Theorem 2.31 in the textbook for details
on the notation). You may use, without proof, the fact that 40 is a primitive root modulo 73.

(a) Let N be the order of 40 (mod 73). Factor N into prime powers as N = qe11 · · · q
et
t .

(b) Determine the numbers gi and hi for each i from 1 to t inclusive. For each i, what is the
order of gi modulo 73?

(c) For each i, evaluate the discrete logarithm yi = loggi hi in Z/73Z, using a method of
your choice.

(d) Solve the system of congruences x ≡ yi (mod qeii ) to obtain the discrete logarithm
x = log40 33.

2. Textbook exercise 3.7 (3.6 in first edition) (RSA example)

3. Textbook exercise 3.8 (3.7 in first edition) (Cracking RSA by factoring)

4. In this problem, you will empirically investigate the Prime Number Theorem, and some of its
variations.

(a) Using any method you wish, determine the number of primes exactly n bits long for
each of the following values of n: 4, 8, 12, 16, 20. (Note: probably the easiest way to do
this is to use Wolfram Alpha; it can correctly answer questions of the form “number of
primes between a and b”. You can also use your Miller-Rabin code, or implement the
Sieve of Eratosthenes, or use any other method you can think of to count primes).

(b) The simplest of of the Prime Number Theorem says that the number of primes less than
or equal to n is approximately n

ln(n) . Use this approximation to give a formula estimating

the number of primes in a closed interval [a, b] (where a, b ∈ Z), and determine the
number of exactly n-bit primes this predicts for the five values of n in part (a).

(c) Another version of the Prime Number Theorem says that the number of primes in a
closed interval [a, b] is approximated by the sum

b∑
m=a

1

ln(m)
.

(Informally, you can pretend that “the probability that m is prime is 1
ln(m) .” This is

nonsense if taken literally, but it is a useful fiction: the sum above would then be the
expected value of the number of primes between a and b inclusive, since it the sum, for
each m in that interval, of the probability that m is prime.)

Compute the number of exactly n-bit primes predicted by this estimate for the same five
values of n. (You can compute this however you like; it can, for example, be done with
a few lines of Python code, or using Wolfram Alpha. State in your write-up exactly how
you computed it.)

(d) Summarize the numbers you found in parts (a) through (c) in a table. Discuss the
relative accuracy of the two different estimates in parts (b) and (c).
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Note: if you’re interested (not part of the course), you can try to prove that the two
estimates, despite looking different, are the same asymptotically (that is, the limit of
their ratios converges to 1 as b→∞). This can be done by approximating the sum with
an integral, applying integration by parts, and finding some bounds on the result.

(e) Modify the approximation methods from parts (b) and (c) to instead approximate the
number of primes p ≡ 1 (mod 5) of each of the five bit lengths, and compute the exact
number of such primes (Wolfram Alpha can do this as well; ask me if you’re having
trouble getting it to understand the question). Construct a table like in part (c) to
compare the true value and the two estimates. Briefly discuss any observations you can
make from this table.

5. (Solve the Miller-Rabin programming problem first, so that you have code that you can use to
count Miller-Rabin witnesses) For each integer n between 1,000,000 and 1,000,009 inclusive,
determine the proportion of the numbers from 1 to n − 1 inclusive that are Miller-Rabin
witnesses. Which of these numbers are prime? (The figures you obtain should convince you
that the 75% figure from Rabin’s theorem is rather conservative, and explains why most
people are not worried about using only a few Miller-Rabin trials to test primality).

6. Suppose that p is a large prime (e.g. 1024 bits), g is a primitive root modulo p, and Alice
has an Elgamal public key A corresponding to a private key a (that is, A ≡ ga (mod p), and
Alice knows the number a). Bob does not believe that Alice actually knows the private key
a corresponding to A, so she asks her to solve the following challenge to prove it. Bob will
give Alice a positive integer d of his choosing. Alice must return (in a reasonable amount of
time) two integers b, c such that

gb · bc ≡ Ad (mod p).

If she succeeds, Bob will be convinved that Alice really does know her private key.

(a) Describe a procedure that Alice can use to solve Bob’s challenge efficiently.
Hint. Choose an integer e at random, and choose b to be ge (mod p). Then find a choice
of c.

(b) Explain briefly why Bob should be convinced that Eve (or anyone else who doesn’t know
the private key) would not be able to carry out the procedure you describe in part (a).

Note. This exercise prefigures the basic idea behind Elgamal “digital signatures,” which we
will discuss soon. You can solve this problem without knowing anything about signatures,
however.

Programming problems

1. Write a function crtList(ls) that takes a list ls of pairs (ai,mi) of integers, with any two of
the values mi relatively prime, and returns a pair (a,m) such that the system of congruences
x ≡ ai (mod mi) is equivalent the single congruence x ≡ a (mod m), and 0 ≤ a < m (i.e. a
is reduced modulo m).

For example, crtList( [(2,3), (3,5), (0,2)] ) should return (8, 30), since the system
of three congruences x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 0 (mod 2) is equivalent to the single
congruence x ≡ 8 (mod 30).

The integer a should be reduced modulo m, i.e. 0 ≤ a < m. The moduli mi will be integers
up to 256 bits in length, and the list will contain up to 128 entries.
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2. Implement the Pohlig-Hellman algorithm. That is, write a funciton ph(g,h,p) that solves
the discrete logarithm problem gx ≡ h (mod p) under the assumption that p is a “weak”
prime, in the sense that p − 1 factors into small prime factors. More specifically: you may
assume that p − 1 factors into prime powers, all 16 bits or smaller, but p will be 64 bits in
length.

3. Implement the Miller-Rabin primality test (or another primality test of your choice): write
a function isPrime(n) that returns True or False according to whether or not n is prime.
The starter code will also define a function checkList that applies your function to a list
of integers; you do not need to modify that part. Each test case will give your function ten
integers of the same size; to pass the test case your function must give the correct answer for
all ten.

4. Write a function makeQP(qbits,pbits) that generates two primes numbers q and p such that
q is exactly qbits bits long, p is exactly pbits bits long, and p ≡ 1 (mod q). Recall that p
is “exactly n bits long” means that 2n−1 ≤ p < 2n.

Take a moment to remind yourself why it is useful to construct primes this way, even if it’s
only the prime p that you want (e.g. for Diffie-Hellman parameters).
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