
Problem Set 2 Math 252, Spring 2020

Refer to the second page of the Course Survey for instructions on submitting written work on
Gradescope, and to the instructions on Problem Set 1 for developing and submitting programming
problems.

Written problems

1. Textbook exercise 1.10, parts (a) and (b) (use a calculator/computer for the arithmetic, but
show the steps). (Extended Euclidean algorithm examples)

2. Textbook exercise 1.15 (basic properties of congruence modulo m).

3. Prove the following basic facts about congruence, asserted in class.

(a) For any integer a ∈ Z and positive integer m, a ≡ (a%m) (mod m).

(b) With a,m as above, the number a%m is the unique element of {0, 1, · · · ,m− 1} that is
congruent to a modulo m (that is, no other element of this set is congruent to a modulo
m).

(c) For any two integers a, b ∈ Z and any positive integer m, a ≡ b (mod m) if and only if
a%m = b%m.

4. The previous problem shows that congruence modulo m is “compatible with” addition and
multiplication, in a suitable sense. In this problem, you’ll see that this is not true of other
arithmetic operations, so you have to be careful.

(a) (Congruence is not compatible with powers) Find integers a1, a2, b1, b2 such that a1 ≡ a2
(mod 3) and b1 ≡ b2 (mod 3), but ab11 6≡ ab22 (mod 3).

(b) (Congruence is not compatible with division) Find integers a1, a2, b1, b2 such that a1b1 ≡
a2b2 (mod 6) and a1 ≡ a2 6≡ 0 (mod 6), but b1 6≡ b2 (mod 6).

Note: we’ll see later that we can recover a sort of compatibility with both powers and
division, but the details are subtle.

5. Textbook exercise 1.16, parts (a), (b), and (c). (Multiplication tables in modular arithmetic)

6. Textbook exercise 1.19. (deducing ggcd(a,b) ≡ 1 (mod m))

Programming problems

1. Write a function bezout(a,b) that takes two positive integers a, b and returns three integers
g, u, v, where g = gcd(a, b) and au + bv = g. The numbers in the test bank will range up to
256 bits in size, but there will also be smaller case that can be solved by a naive approach. I
recommend that you implement the extended Euclidean algorithm (either the way we outlined
it in class, or following one of the methods in the text), but other methods may also work.

2. Write a function disclog(g,h,p) that solves the discrete logarithm problem in a naive way
(quickly enough to work in less than 1 second if p is a 20-bit prime). Multiple answers are
possible (we’ll discuss this later); an answer n will be marked correct as long as gn ≡ h
(mod p). To allow you to see exactly where the naive approach becomes too slow (or, if
you’re up for it, to allow you to try to implement better methods), the test bank will include
cases where p ranges up to 40 bits, but you will receive full credit as long as your
code solves the test cases up to 20-bit primes. (Later, we’ll discuss and implement an
algorithm that can solve the entire test bank).

due Wednesday 2/15 by 10pm (both written and programming). page 1 of 3


