MATH 158
FINAL EXAM
20 DECEMBER 2016

Name : SO‘U"HOVW

e The exam is double-sided. Make sure to read both sides of each page.

e The time limit is three hours.

e No calculators are permitted.

e You are permitted one page of notes, front and back.

e The textbook’s summary tables for the systems we have studied are provided at the
back. There is also a multiplication table modulo 23. You may detach these sheets
for easier reference.

e For any problem asking you to write a program, you may write in a language of
your choice or in pseudocode, as long as your answer is sufficiently specific to tell the
runtime of the program.
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(1) Briefly explain why each of the following choices is made in the cryptosystems we
have studied (e.g. give a reason why it is necessary for the rest of the algorithm to
work, why it makes a specific attack more difficult, or why it makes a computation

more efficient).

(a) The element g in Diffie-Hellman (table 2.2) is chosen to have “large prime order.”

The oudin shodd be large so Hhedk collision algentiwm (e.q.856:)

ang W nellecive.,
Theodnhding prime emuan Hhed the fohlig:Helwion oLP
dlgeithm cannt be wied.

(b) In Elgamal encryption (table 2.3) and digital signatures (table 4.2), the number
k is chosen randomly each time a document is encrypted or signed.

]?epecchng the same ey, o wiing a clos«:lq nulated Veey, may allow
Eve Yo solve £ ony plamtexd in Yom of ancthen.

W the signaline scheme, rpected | nelided) ke may allow Eve
o slvefin the privak (signing) leeyy
enciyption

(c) The deerypéion exponent e in RSA (table 3.1) satisfies ged(e, (p—1)(g— 1))=1

Nice needs o §ind an iwverse of e modulo (p-Dla-)
(a &unbjp-haw @(pmwn+); Hir wan't exint unlw

%&(e, (N () = 1.

(d) The two primes p, ¢ is DSA (table 4.3) satisfy p = 1 (mod g).

q vyt divide p-\, othoawisc elmunts g of srden q

cawot exirt.

Parts (e-h) on reverse side.



(e) The prime p in ECDSA (table 6.7) can be chosen much smaller than the prime
p in DSA (table 4.3).

ln DI, p wuat be lano evough o detead DLP dgonithim

$oo (Y e.g. Y vumbu Field sieve.

For the ECOLY, 4k bew alap. requine (OHod6) steps, allowing
P 4 be muh ymalln,

(f) The primes p and ¢ in ECDSA are roughly the same size (same number of bits
in length).

Hames tamt. steden thek [E(@) 2 o (944 ovor, whaw lenralezi)
and q can be deun equgl 4o IE(RR),

’

(g) In the congruential cryptosystem (table 7.1), the plaintext m is chosen less than
\/q/4, rather than less than 4/q/2 like the numbers f, g and 7.

Twar bowd, alovg wiYh g>Vald, emaes thek
m<q, so +thek learming m modq ot he end

i moucgt\ fo leam m.
(h) In NTRU (table 7.4), the element f € R is chosen from the set 7(d+1, d) rather
than from the set 7(d, d) like the elements g and r. (Recall that the notation

T (dy, dg) denotes the set of polynomials in R with d; coefficients equal to 1, dj
coeflicients equal to —1, and all other coeflicients equal to 0.)

ElcwM&o{) TlAd) av veun imerdibl m R n Ry

(the sum oPthe coeHs. i 0); § needrdo have an
invenvy in both Aingp, o the nert of the
comw{'a:‘rio(v). |

(12 points)



(2) Find the smallest positive integer n such that all three of the following congruences
hold.

3 (mod 5)
7 (mod 8)
0 (mod 9)

n

n

(Hne

n

M n=3+5h
o  345h =7modd = Eh=4modd
note 5-'s5madd  (sine 25 =\), hunie
hs 54 =4 modd ; Ik b= u+ k.

= m= 3 +5Usgh) = 23+ 40k (e n= 23 wodH0).

= 23440k = Owmedd 5k =0 vmod4
=y Yk= -5 =4 wod 4
= b=\ wodd (4 invesibl wod. 4)
ie. 38 . W=1+ak
=y wm= 23+40(14498) = 63+ 3404
ie. M= b3 mod 360.

The swiadlnt such n i n=63.|

More space for work on reverse side. (7 points)



Additional space for problem 2.



(3) Let p be a prime number, and E be the elliptic curve over [F, described by
Y? = X3+ AX + B (mod p), where A and B are constants.

(a) Prove that given any integer  with 0 < z < p, there are at most two integers y
with 0 < y < p such that (z,y) € E(F,).

B Any suth y muat satindy
b;z'E VA B mot\p-
So if UL e two such, then Ytz 4 mad).

\e. ‘43“4} = ()4~ yo) =0 W\OAP.
Ve. P l (%\*ﬁl\(q.—qﬁ‘
Sinee p O pinme, eithur pllor) o pliuw-us)
ie. eithe M\"'-"Hthd() O W= U mon.
So given one such g the only other possibility

w o Y= P,
(3 points)

(b) Under what circumstances is there exactly one point on the elliptic curve with
X-coordinate equal to x?

1§ 1AW= O wodp, thenw uy=0 U the only
medthing u;—coor&imjrc  sinte YE=Y MDAP in
Yhix cane (e onlyHhar cane)

(Yow ot possibilitg i p=2, whith i wually
nuled ouk whon workivg with ellipticcinveyin
thir fom) .

Part (c) on reverse side. (1 point)



(c) Prove that if P,@ € E(F,) are two points on the elliptic curve with the same
X-coordinate, and n is any integer, then either n- P and n - ) are both equal to
the point O at infinity, or both have the same X-coordinate.

1§ P=(xu), then @ wuat be (eithw equal 4o p.o)

A= (x-y)  (from podt  (all
= ©P  (invomc in gpoup shuchor),

1 P=Q, the rendt & cean, so amume P=©Q. .

Tee Pz b0 ona
So et D=9 & nE=060=0,

m nP= Xy & na = o (¥, q)
= (Y’,—q‘),

whith hen Yhe same w- coordinate .

(3 points)



(4) Write a function decipher(c,p,q,e), and any necessary helper functions, to deci-
pher messages encrypted with RSA. The input consists of the ciphertext ¢, the secret
primes p, ¢, and the encryption exponent e (notation as in table 3.1).

You should implement any helper functions you use that are not built into Python,
or the standard programming language of your choice. You may assume that a fast
modular exponentiation function pow(a,b,m) (returning a®%m) is built-in (as it is
in Python).

def inverse (a,m) Hboard on evtended euc. alg.

p"ll = O: m .
cur = 1, a H b will b ol fom v, S on equetion
while cualiVy O: # murav=g (U omibed sre notnedd)

k = V\L{,\‘X ICUJ‘U-_X
gt = pell-le¥eunlol, prelil-le¥emiil
M'CM = CUN, “\L"_

v.g=pre  #g=qdlam
it g l=1: netuwm Nowe

o VM

&{’-{l Jét‘tp\w\(c,\),qte\;
d= wose (e, (p-\W(q-\\)
ek gow(c.e, p¥q)

More space for work on reverse side. (7 points)



Additional space for problem 4.



(5) Suppose that Alice and Bob are using NTRU with parameters (N, ¢, p, d) = (5,23,3,1)
(notation as in table 7.4). Alice’s public key is

h = 21 + 14z + 132 + 42° + 172",
Bob wishes to encipher the message
m=1+z+z*—z"

Find a valid ciphertext e that Bob might compute to send this message. (There are
many possible answers; you only need to give one.)

Note that a multiplication table for Z/23 is provided at the back of the exam
packet, which may be useful in your computations.

e = Mm+ 3(2\+\ux+\3x‘+4x‘+\w) wa o whee 2eT(L).

eq. we can select A= \=%. I thi conc:

e = 20 1+ RE 4P+ I
R A A A

= 4 + by +225H+ Hx + 3%
winy ¢haat,
e P-h‘k/\ = |2+ 2% +2_())g7'+ \qys""léxq
huvce [e = \'5-\-'5544—2\%7'&-\4\(3*-\’5@

(m. in contenlifted fom, ~\0+3x- TN g*q)

J| Yeor ane 20 elomats of T(LY, 0 14 other amwon possible,

More space for work on reverse side. (7 points)



Additional space for problem 5.



(6) Let p be a prime number, and a an integer with 1 <a <p—1.

(a) Define the order of a modulo p.

mg\[a-\v = piningum positive intego e w. s lwody .

Equivalently, +he peiod of th sequence (0870 ec W_}
ol +hg humwcr? OlM'th{‘ numlwn v 'H‘IM Yqleence.

(2 points)

(b) Define what it means for a to be a primitive root modulo p.

a ir cpiwnkive nodk 2= dlalo= p-1\.

Equivalently cld wonzuo [b]p €Llp o

B powers of [alp (10 diraee logentthin
ane will-defined)

(2 points)

(c) Let p = 7. For each choice of a from 1 to 6 inclusive, determine the order of a,
and identify whether or not it is a primitive root.

Qa powLy of avwdp el vim. noot?

\ LT ‘ =

2 24,1, 2 o
(3D 3,2,64,5, 6 s

4 d,2,\, 3 no
5D BH.6,2.3,\ 6 S

6 b, v = Mo

More space for work on reverse side. (3 points)



Additional space for problem 6.



(7) Each day, Alice and Bob perform Elliptic Curve Diffie-Hellman key exchange (nota-
tion as in table 6.5) to establish an encryption key for the day. Each day they use
the same public parameters: the prime p = 23, curve Y% = X*® + 2X + 6 (mod 23),
and the point P = (1, 3).

On Monday, Alice and Bob exchange the values
Qa= (18,200 Qp=(4,3)

and establish the shared secret S = (19,7). Due to careless data management, Eve
manages to learn all three of these values.
On Tuesday, Alice and Bob exchange the values

Q4= (5,16) Qp=(18,3)
and establish the shared secret S’, which Eve is not able to intercept. However, Eve

does notice that, due to poor random number generation by both Alice and Bob,
these values are related to Monday’s values by the equations

Qu=Qa®P Qp=2-Qs.
Use this information to determine the new shared secret S’. There is a multiplication
table for Z/23 at the back of the exam packet that may be useful in your computa-
tions. For partial credit you may express your answer in terms of the given points

and elliptic curve operations; for full credit you should calculate the coordinates
explicitly.

= ming P = MA-(@r) = MA-(2-Go)
=2-(NA Q) = 2- (M NeP) = 2mg-(AQR) = 2ng- (Ga6P)
= JneGp) ©2 ng)? = 2-S®2.Qp.

we coud compude thit eithn 0a 2-S@GR = 2-(14.1) & (8.3),

nas 256 = 2+ ((141) &U3)).
Hows Wow 4o do the firtoption : (chatuned fo el micthpltation)

2043
0 (adle(ad) [0 (R0)e183) | So the new shaned secnek

Az (31a%2)(23) = 9 (0-3)-(12-Y" %

g 4-5s20 7\.=.l(>moc§23 \SA: (H,lS)
Xy = 20-14-19 Yyz 51318

=17 mod23 sldmod2y | - Al eanakively, ome con compure
Yyz-|F+20-(11-)) Yp = - [0+ (F-)] (14, H\e @n) = (6.21)

z-13210 8= wmd2t g 2.(6.20=(M,15).

=2{14.3) = (3,10) = (00082 (,15) o

More space for work on reverse side. (7 points)



Additional space for problem 7.



(8) (a) Estimate the number of 512-bit prime numbers (that is, prime numbers between
2511 and 2512 — 1 inclusive). Your answer will be marked correct if it within a

factor of 10 of the correct figure, and may be expressed in terms of standard
mathematical functions (exponentials, logarithms, etc.).

Prime number themam: nougqhly one In(25%) = 51202
512- bibviumhon one prime.

5l
So e numha of 512-bik pinws o Aouqfnhj _521_:'7'.—171_2"‘

(2 points)

(b) Assume that you have implemented a function is.prime(n) that efficiently de-
termines whether or not n is prime, and returns either True or False. Write
a function safe_prime() that returns a 512-bit prime number p such that the

number p — 1 has at least one prime factor that is at least 256 bits long.
imput Acndom

Jet m},u_\v\\vm(‘o“’&\‘-
1 True: (bifs-1)
whi pr:enamlom./saudnan%(ZH9H-,’ZH« bih)

i o ) nctunn p

_onime () :
dek sa:'e :Aw\au_@mm(z%) £ e o fado of -\,

swill sk p= kgl Foo st e
mink = (28¢5 /g + |
ke = (2¥¥512)/g
Wl True:
o \e = nandem, nandransye (v, waxle)
p= ke¥q+l
if n-pime(p):
netun p

More space for work on reverse side. (5 points)



Additional space for problem 8.



(9) Consider the following variation on the NTRU cryptosystem. In advance, Alice and
Bob agree to the following public parameters.

N =503, ¢=257, p=3

Privately, Alice chooses three polynomials at random, from the following sets. She
keeps these polynomials secret; they constitute her private key.

fe 7(101,100), g, € 7(31,30), g, € T(10,10)

(Recall that 7(d,e) denotes the subset of the ring R = Z{X]/(X" — 1), where ele-
ments are represented as a list of N coeflicients, consisting of polynomials with exactly
d coefficients equal to 1, e coefficients equal to —1, and the rest of the coefficients
equal to 0.)

Alice ensures that f is invertible modulo ¢ (otherwise she chooses a new value),
with inverse F, € R,. She then computes the following two elements of R,. She
distributes these values; they constitute her public key.

h) =F,xg; (modgq), hy=F;xg, (mod q)

To send messages, Bob chooses a plaintext m € R,, chooses a random ephemeral
key r € 7(10,10), and computes a ciphertext e € R, as follows:

e =hy xcl,(m) +phyxr (mod g).

(Here cl, denotes centerlifting from R, to R; in the case p = 3 this gives a polynomi-

als with all coefficients equal to —1,0, or 1.)

(a) Describe a procedure that Alice can use to recover the plaintext m from the
ciphertext e. You may need to make an additional assumption about an element
being invertible in a ring.

Finst cmpw& fre wodq, thir o = g, % clglml+ pgs b nmodg
since  FaFgWgi= o MM‘Q.

Cevitenlitt thig, o dotam o powmomial @ =cl(§ be) €K.
wd-q

Compule (o)) ®ax modp, whoe o) o th
invew of g, in Re lic wiodulo p).

TWis will be Hhe pledntext m.

Part (b) on reverse side. (3 points)



(b) Prove that the method you describe in part (a) will succeed, given the specific
parameters specified above.

We \now thak
a = gkwm+ 3 g, %N wod 257
As long ar the RMY has alk coehh. between -283(2 & 257/2,

Ewill be ih own centulifs sinea cevitnlitted thet will enaun
a=qg%m+3g, %0  (exed equadiy. mR)

and in Tumn a=9g,.vm wmldl & Gk -3/1/_\40(13,
™m

so H necovem the plaintext.

153

So it sufhiy ko show thak ‘q‘*w“'z%’s‘ﬂ\w €7 =185,

Enom a \ewima in clawr, 9,6 T(3130) & (Wl £l implies
[9,8m|n « (3130):| =61

& e T(1010), [alnel implioy
| 9. 80w € (l0%10)1 =20

=> |3:928nle0 320= 40.
By the hicungle imua,&‘ﬁ;,
|9, %1439, %n|w

< \g eml+ 2-\g%n (e
€ 2o+4 41+ 60 =121. <8

ded

So indeed a = g, Brwm+3g, %A,
and deayplion dhwagy succceds.

(4 points)



(10) Suppose that p and g are prime numbers, F is an elliptic curve over F,, and G € E(F,)
is a point of order g¢.

Samantha and Victor are making use of the following signature scheme, similar to
ECDSA. Samantha has a secret signing key ¢ (1 < ¢ << ¢ — 1), and a verification
key V = s G, which is public information. A signature consists of a pair (s7, s2) of
integers, both between 0 and g — 1 inclusive, and a document consists of an integer
d from 1 to g — 1 inclusive. Victor will consider a signature (s1,s2) valid for the
document d if the following equation holds.

z((d 7 s1) - Ve (d'ss) - G)%q = 81

Here d~! denotes the inverse modulo g, and z(P) denotes the z-coordinate of a point
P on E(F,).

(a) Suppose that Samantha wishes to sign a document d, and she begins by choosing

a random ephemeral key e, and computing s; = z(e - G)%q. Explain a method

Sawmant =Adiee can use to compute a value sy such that (s, $;) will be a valid signature
for d.

s emough fo exwwe Hhak (ds)Velds)G= e-G
1e. &5, +d's; =e mod q (sine 00dG=q)
ie. Sy S + Sz = Oq'e W\OC&C{'

So Samentha can CGYW()WFC S, o)

E’z = de-S-S W\w\a

Parts (b) and (c) on reverse side. (3 points)





(b) Suppose that Eve wishes to forge a valid signature for this system. As in the
“blind forgery” methods we've discussed in class, she will not be able to choose
the document d in advance. Instead, she begins by choosing two integers 7 and
4 at random from 1 to ¢ — 1 inclusive, and computes s; = z(i-G®j- - V)%q.
Explain a method Eve can use to compute a value of sy and a value of d, so that
(s1,52) will be a valid signature for the document d (even though d will likely
appear to be gibberish).

W4 enough to enuae Hhat
(As) V ®(d'n)G = -G ® V.
Fo thir, it subfico o evaum thak

Aty =4 mode
& 0Q—\ g‘[_ = ! MD&Q

Sy, Eve can compute |
A = ’.}A'S\ oA q

& SZEA.:" W\D&Q
(= 3750 wodq),

(Y)D'\‘C ‘H/l&)“ ]MM we
need j =0 wodq)

(3 points)

(c) Explain briefly how Samantha and Victor could modify this signature scheme
using a hash function, in order to make Eve’s method in (b) infeasible.

l{ h n QA secune haAlﬂ ﬁmc{-im, (wl ow}pw{— Y [o'q_n)’
Yhey can wme hid) iviead of 4 in the venl. egn.

Eves clladh n 0 o viow wacley sine che would
nave fo vk Hhe haah funckion to geb o doc d

haahing fo the value  3-'s, mo&q,

(1 point)



Additional space for work.

“Bonus” (to keep me happy during grading, not for real points): fill in cryptography-related
(or totally unrelated) dialog for this comic.

UL, a2, Com

(0 BNnE Ryan North



Additional space for work.



__Public parameter creation
A trusted party chooses and publishes a (large) prime p
and an integer g having large prime order in I},

Private computations

Alice Bob
Chioose a secrot, integer .
Compnte A = g* (mod p).

“Choose a secret integer 1.
Compute B = g* (mod p)

Public exchange of values
Alice sends A to Bob — A
B +—m8M

Further private computations
Alice Bob

Compute the number B¢ (mod p). | Compute the number A (mod p).
The shared secret value is B¢ = (_QE}“ = gi“’ = (g")" = A® (mod n):

Table 2.2: Diffie-Hellman key exchange

Public parameter crealion

A Lrusted party chooses and publishes a large prime p
and an element g modulo p of large (prime) order.

Samantha |

Key creation

Bob sends B to Alice J

Choose secret primes p and g.
Choosc verification exponent e
with

ged(e,(p—1)(¢— 1)) = 1.
Publish N = pg and e.
' Signing

“Compute d satisfying
de=1 (mod (p —1)(g - 1)).

Sign document D by computing
§ = D¢ (mod N).

Verification B
Compute S€ mod N and verify
that it is equal to D.

Table 4.1: RSA digital signatures

Public parameter creation
A trusted party chooses and publishes a large prime p
and primitive root g modulo p.

Alice I Bob

Samantha [ Victor

Key creation

Key creation

Choose private key 1 <a <p— 1.
Compute A = g (mod p).
Publish the public key A.

Encryption

Choose plaintext m.
Choose random element k.
Use Alice’s public key A
to compute ¢; = g* (mod p)
and ¢; = mA* (mod p).
Send ciphertext (c1, cz) to Alice.

Decryption

Compute (cf)~! - ¢z (mod p).
This quantity is equal to m.

Table 2.3: Elgamal key creation, encryption, and decryption

Bob |

Key creation

Choose secret primes p and gq.
Choose encryption exponent e

with ged(e,(p—1)(g—1)) = 1.
Publish N = pg and e.

Encryption

Choose plaintext m.
Use Bob's public key (N, e)

to compute ¢ = m® (mod N).
Send ciphertext ¢ to Bob.

Decryption

Compute d satistying

ed =1 (mod (p—1)(g — 1)).
Compute m’ = ¢* (mod N).
Then m' equals the plaintext m.

Table 3.1: RSA key creation, encryption, and decryption

Choose secret signing key
1<a<p-1.

Compute A = g* (mod p).

Publish the verification key A.

Signing

Choose document D mod p.
Choose random element 1 < k < p

satisfying ged(k,p — 1) = 1.
Compute signature

Sy = ¢* (mod p) and

Sy = (D —aS1)k™! (mod p—1).

Verification

Compute 45155 mod p.
Verify that it is equal to g mod p.

Alice f

Table 4.2: The Elgamal digital signature algorithm

Public parameter creation

A trusted party chooses and publishes large primes p and q satisfying
p=1 (mod g) and an element g of order g modulo p.

Samantha | Victor

Key creation

Choose secret signing key
1<a<g-1.

Compute A = g* (mod p).

Publish the verification key A.

T

Signing

Choose document D mod q.
Choose random element 1 < &k < q.
Compute signature
S; = (g* mod p) mod q and
So = (D +aS;)k™! (mod g).

Verification |
Compute V; = DSy ' (mod g) and
Vo = 51557 (mod g).
Verify that
(g"1AV2 mod p) mod g = 5.

Table 4.3: The digital signature algorithm (DSA)



Public parameter creation

A trusted party chooses and publishes a (large) prime p,
an elliptic curve E over F, and a point P in E(Fy).

Private computations

Alice Bob

Chooses a secret integer np.
Computes the point @ = ngP.

Chooses & secret integer n4.
Computes the point @4 =naP.

Public exchange of values

~Alice sends @4 to Bob y Qa4

QB ¢ Bob sends (Jp to Alice

Further private computations
Alice Bob

Computes the point na(}p. Computes the point npQa.

The shared secret valueis nsQp = na(ngP) = ng(naP) = ngQa.

Table 6.5: Diffie-Hellman key exchange using elliptic curves

Public parameter creation

A trusted party chooses a finite field Fp, an elliptic curve £/,
and a point G € E(F,) of large prime order g¢.
Victor

| Samantha |

Alice — Bob il
Key Creation B '

Choose a large integer modulus g.
Choose secret integers f and g with f < \/m,
Va/4 < g < 4/q/2, and ged(f,q9) = 1.

Compute h = f~1g (mod g).
Publish the public key (g, k).

Encryption
Choose plaintext m with m < /q/4.

C hooie a ‘ulV'HiOV'V'\ r\',".;";_.f*l.'se Alice’s public key (g, h)
to compute e = rh +m (mod g).

Send ciphertext e to Alice.
Decryption

__Then b is the plaintext m.

Compute a = fe (mod g) with0 < a <q.
Compute b = f~la (mod g) with 0 < b < g.

Table 7.1: A congruential public key cryptosystem

Public parameter creation

A trusted party chooses public parameters (N, p, q,d) with N and p
prime, ged(p, ¢) = ged(N,q) = 1, and g > (6d + L)p.

Key creation

Choose secret signing key
1<s<g—1.

Compute V = sG € E(F;).

Publish the verification key V.

Signing

Choose document d mod g.
Choose random element e mod gq.
Compute eG € E(F,) and then,
91 = z(eG) mod ¢ and
33 = (d+ 981)e" (mod g).
Publish the signature (s1,82).

Verification

Compute v1 = ds; ' (mod ¢) and

v2 = 5187 (mod gq).
Compute v, G+v,V € E(Fp) and ver-
ify that

z(v1G + v2V) mod g = 8;.

Table 6.7: The elliptic curve digital signature algorithm (ECDSA)

Public Parameter Creation

A trusted pdrty chooses and publishes a (large) prime p,
an elliptic curve E over Fy, and a point P in E(F,).

Alice [ Bob

Key Creation

Chooses a secret multiplier 724.
Computes Q4 =naP.
Publishes the public key Q 4.

Encryption

Chooses plaintext values m; and mo
modulo p.

Chooses a random number k.

Computes R = kP.

Computes S = kQ 4 and writes it
a8 S = (zs,ys).
¢ = zgmy (mod p)
¢z = ysmg (mod p).
Sends ciphertext (R, c1,c) to Alice.

Sets and

Decryption

Computes T =naR and writes
itas T = (zr,yr).
Sets mj =z7'c; (mod p) and
m} = yrley (mod p).
Then mj = m; and m) = ms.

Table 6.13: Menezes-Vanstone variant of Elgamal (Exercises 6.17, 6.18)

Alice [ Bob

— Key creation

Choose private f € 7 (d+ 1, d)
that is invertible in R, and R,.

Choose private g € 7(d, d).

Compute Fg, the inverse of f in

R,.

Compute F'p, the inverse of f in

R,.
Publish the public key h = Fgx g.

Encryption

Choose plaintext m € ;.

Choose & random 7 € T (d, d).

Use Alice’s public key h to
compute e = pr*h-}@(mod q)-

Send ciphertext e to Alice.

Shoul be clplm)
(uffuun Fom Ro mz;\»

Decryption

Compute
fre=pg*r+ f+m (mod g).
Center-lift to @ € R and compute
m = Fy,xa (mod p).

Table 7.4: NTRUEncryt: the NTRU public key cryptosystem
Re\evant defivitions:  (in NTRU)
R = A/ (xN-1) ; elemuents neproncuted
by N coekficients.

’Tun&t\ = elementy of R with exactly
da wz‘i@-\M eqad’ro 1
Ay coebticients equal =1

& P ek equal o 0.

Re = ()] [(e)
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Multiplication table modulo 23
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3
6
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0
4
8
12
16
20

0
5
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0
6
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T
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0
7
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0
8
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I
9
17
2
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3
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4
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B
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G
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7
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0
9
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4
13
22
8
17
3
12
21

=1

0
10
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7
17
4
14
1
11
21
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16
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0
11
22
10
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9
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8
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7
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17
5

16

0
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1
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2
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3
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4
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)
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6
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7
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8
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10
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0
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0
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5
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2
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0
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6
1
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f

-1
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15
10

(1}

0
19
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