Suggested reading for this week (from the textbook): §2.2

Study items for PSet 3:

- Truth tables, and their use in proving tautologies or that logical expressions are equivalent.
- Proving biconditionals in two parts ("⇒" . . . "⇐")
- Direct proofs
- Indirect proofs: the distinction between proofs by contradiction and proof by contrapositive.

Problems from the book: (First two numbers refer to the section number. The phrase in parentheses is just a brief summary to remind you which problem is about what when you scan this sheet later.)

- 1.4.6 (prove distributivity of \(\land \) over \(\lor \) via truth table)
- 1.4.9 (verify a tautology via truth table.)

 NOTE: a “tautology” is a logical expression that is always True, regardless of the truth values of the individual propositions.
- 1.4.12 (does parenthesis placement matter with \(\lor \) and \(\land \)?)
- 1.5.5 (generalized de Morgan laws)
- 1.6.11 (Truth tables with implications; four parts)
- 2.1.6 (biconditional about a polynomial)
- 2.1.8 (\(n^3 + n \) is always even)
- 2.1.9(a) (sums of three consecutive integers)
- 2.1.13 (sum of rational and irrational)
- 2.1.16 (\(\sqrt[3]{2} \notin \mathbb{Q} \))

Supplemental problems:

1. Prove that \((P \land Q) \Rightarrow R\) is logically equivalent to \(P \land \sim R \Rightarrow \sim Q\).

2. (a) Let \(m \in \mathbb{Z} \). Prove that either \(m^2 = 4k \), with \(k \in \mathbb{Z} \), or \(m^2 = 4k + 1 \), with \(k \in \mathbb{Z} \).

 (b) Let \(a, b, c \in \mathbb{Z} \). Prove that if \(a^2 + b^2 = c^2 \), then at least one of \(a \) and \(b \) is even. (Hint: Use part a))

due Wednesday 2/18 by 10pm.