Given info. (at key moment):

\[x' = \frac{40}{\text{mph}} \]

Differentiated:
\[2x \cdot x' = 2h \cdot h' \]

Substituting \(x = 40 \), \(h = 4 \), \(h = \sqrt{17} \) gives
\[2 \cdot 40 = 2\sqrt{17} \cdot h' \]

\[h' = \frac{80}{2\sqrt{17}} = \frac{160}{\sqrt{17}} \text{ (mph)} \approx 38.8 \text{ mph} \]

\[V = \frac{4}{3} \pi r^3 \]
\[V' = \frac{4}{3} \pi \cdot 3r^2 \cdot r' \]
\[V' = 4 \pi r^2 \cdot r' \]

At this moment:
\[r = 2 \]
\[r' = -1 \]
\[V' = 4\pi \cdot 2^2 \cdot (-1) \]
\[V' = -16\pi \text{ min}^3/\text{hr} \]

\[A = \pi r^2 \]
\[A' = 2\pi r \cdot r' \]

Given:
\[r = 10 \text{ (clean 20)} \]
\[A' = 100 \text{ ft}^2/\text{min} \]

Sub:
\[100 = 2\pi \cdot 10 \cdot r' \]
\[r' = \frac{100}{20\pi} = \frac{5}{\pi} \text{ ft/min} \]

\[A = w \cdot h \]
\[A' = w'h + wh' \]

Given:
\[w = 2 \]
\[w = 6 \]
\[h = 8 \]

Sub:
\[A' = 2 \cdot 8 - 6 \cdot 3 \]
\[= 16 - 18 \]
\[= -2 \text{ in}^2/\text{sec} \]
5. Given

\[V = 10s^2 \quad V' = 20s\cdot s' \quad \text{Given} \quad s' = 2 \quad \text{Given} \quad v' = 20 \cdot 8 \cdot 2 = 320 \text{ in}^3/\text{min}. \]

6. \[V = \frac{1}{3} \pi r^2 h \quad \text{when} \quad \frac{h}{r} = \frac{12}{6} = 2 \]
 \[\text{ie.} \quad h = \frac{12}{2} r \]
 \[V = \frac{1}{3} \pi r^2 \cdot \frac{12}{2} r \]
 \[V = \frac{4}{3} \pi r^3 \]
 \[V' = \frac{4}{3} \pi r^2 \cdot r' \]
 \[r' = -2 \quad r = 2 \]
 \[V' = \frac{12}{3} \pi r^2 \cdot (-2) \]
 \[= \frac{12}{3} \pi (-8) \]
 \[= \boxed{48 \pi} \text{ ft}^3/\text{min} \]

7. \[x^2 + y^2 = 10^2 \]
 \[z = -1 \quad z = 3 \quad \text{key moment} : \]
 \[3 \quad \frac{10}{\sqrt{11}} \]

8. \[x^2 + 30y^2 = k^2 \quad x' = 10 \quad \text{and} \quad 300 \text{ft} \]
 \[x = 10 \quad \text{sec} \quad 400 \text{sec} = 400 \]
 \[x' = 10 \quad \text{ft} \cdot \text{sec} \quad h = 500 \]
 \[\frac{400}{500} \]
 \[h' = \frac{400}{500} \cdot 10 \]
 \[= 8 \text{ ft/sec}. \]