Worksheet 2 Solutions:

1. \(g(x) = \frac{x}{x-1} - \frac{x+2}{x} = \frac{a(x)}{x(x-1)} - \frac{b(x)}{x(x-1)} = \frac{a(x) - b(x)}{x(x-1)} \)

\(\Rightarrow \frac{x(x) - (x-1)(x+2)}{x(x-1)} = \frac{x^2 - (x-1)(x+2)}{x(x-1)} = \frac{x^2 - x^2 - 2x + 2}{x(x-1)} = \frac{-2x + 2}{x(x-1)} = \frac{-2}{x-2} \)

\(= \frac{x^2 - x}{x-2} \)

2. \(f \circ g(x) = f(g(x)) \)

(a) Note that the domain of a function is everything the function can take in. So, the domain of \(f(g(x)) \) will be defined by \(g(x) \). That's what goes in. Since \(g(x) \) is a value, specifically any value given by plugging in \(x \), the domain of \(f(g(x)) \) is the range of \(g(x) \).

(b) \(f \circ g = f(g(x)) = \frac{1}{\sqrt{x+2}} + 4 \)

\(\Rightarrow g \circ f = g(f(x)) = g(\sqrt{x+4}) = \sqrt{x+4} + 2 \)

\(f \circ g \) does NOT equal \(g \circ f \). Consider \(x = 0 \):

\(f(g(0)) = \frac{1}{\sqrt{0+2}} + 4 = \frac{1}{2} + 4 = \frac{9}{2} \)

\(g(f(0)) = \sqrt{0+4} + 2 = \sqrt{4} + 2 = 2 + 2 = 4 \)

These are not equal!

3. \(f(f(x)) = \frac{f(x) + 1}{f(x) - 1} \)

\(\Rightarrow \) You can break this up! \(f(x) = \frac{2+1}{2-1} = 3 \)

Remember to plug all of this in first.

\(\Rightarrow \) So \(\frac{f(2) + 1}{f(2) - 1} = \frac{3+1}{3-1} = \frac{4}{2} = 2 \)

\(f(2) + 1 = \frac{x+1}{x-1} + 1 = \frac{x+1 + x-1}{x-1} = \frac{2x}{x-1} \)

\(\Rightarrow \frac{x+1}{x-1} - 1 = \frac{x+1 - (x-1)}{x-1} = \frac{2}{x-1} \)

\(= \frac{2x}{x-1} \cdot \frac{x-1}{2} = \frac{2x}{2} = x \)
4. \(f(x) = \frac{1}{x+1} \Rightarrow f(x+h) - f(x) = \frac{1}{x+h+1} - \frac{1}{x+1} = \frac{x+1}{(x+1)(x+h+1)} - \frac{1}{x+1} \cdot \frac{1}{h} = \frac{-1}{(x+1)(x+h+1)} \)

5. \(f(x) = \frac{x-7}{x+3} \Rightarrow f(x+h) - f(x) = \frac{x+h-7}{x+h+3} - \frac{x-7}{x+3} = \frac{(x+3)(x+h-7)}{(x+3)(x+h+3)} - \frac{(x-7)(x+h+3)}{(x-7)(x+h+3)} \)

\[= \frac{x^2 + xh - 7x + 3x + 3h - 21}{(x+3)(x+h+3)} - \frac{x^2 + xh + 3x - 7x - 7h - 21}{(x+3)(x+h+3)} \]

\[= \frac{3h + 7h}{(x+3)(x+h+3)} = \frac{10h}{(x+3)(x+h+3)} \cdot \frac{1}{h} = \frac{10}{(x+3)(x+h+3)} \]

6. (a) \(\frac{\chi^2 - 8\chi - 8}{\chi^2 - 4} = \frac{(\chi - 2)(\chi + 4)}{(\chi - 2)(\chi + 2)} = \frac{\chi + 4}{\chi + 2} \)

(b) \(\frac{\chi^2 - 6\chi + 8}{\chi^2 - 5\chi - 14} = \frac{(\chi - 1)(\chi + 4)}{(\chi - 7)(\chi + 2)} = \frac{\chi + 4}{\chi - 7} \)

(c) \(\frac{\chi^2 - 6\chi + 8}{\chi^2 - 4} = \frac{(\chi - 2)(\chi + 4)}{(\chi - 2)(\chi + 1)} = \frac{\chi - 4}{\chi + 1} \)

(d) \(\frac{1}{t+1} - \frac{1}{t} = \frac{1}{t+1} - \frac{1}{t+1} = \frac{1}{t+1} - \frac{1}{t+1} = \frac{1}{t+1} \)

(e) \(\frac{t-1}{g(t^2) - 3} = \frac{t-1}{2t^2 + 1 - 3} = \frac{t-1}{2t^2 - 2} = \frac{t-1}{2(t^2 - 1)} = \frac{t-1}{2(t-1)(t+1)} = \frac{1}{2(t+1)} \)

(f) \(\frac{x^2 - 13x + 42}{x^2 - 4x + 12} \) can't simplify. Check: \(\frac{4 \pm \sqrt{16 - 4(12)}}{2} \) anymore?

This tells us there are no real solutions to this, so it can't be simplified more!
(g) \[\frac{1}{x} - \frac{1}{|x|} \Rightarrow \text{Case 1: } |x|, \text{ } x \text{ is pos.} \]
\[\frac{1}{x} - \frac{1}{x} = 0 = [0] \]
\[\text{Case 2: } |x|, \text{ } x \text{ is neg.} \]
\[\frac{1}{x} - \left(\frac{1}{-x} \right) = \frac{1}{x} + \frac{1}{x} = \frac{2}{x} \]

(h) \[\frac{x+4}{x+4} \Rightarrow \text{Case 1: } |x+4|, \text{ } x+4 \text{ is pos.} \]
\[\frac{x+4}{x+4} = [1] \]
\[\text{Case 2: } |x+4|, \text{ } x+4 \text{ is neg.} \]
\[\frac{x-4}{x+4} = [-1] \]

(i) \[f(x) = \frac{1}{x}, \quad \frac{f(t-1)-2f(t)}{t^2-4} = \frac{1}{t-1} - 2 \left(\frac{1}{t} \right) = \frac{t - 2(t-1)}{t^2-4} = \frac{t^2-4}{t^2-4} = \frac{t+2}{t(t-1)} = \frac{-(t-2)}{t+2} \]

7. \[f(g(x)) = \frac{x^3+1}{x^3+2} \]
Note: For problems like this one, try to find a repeating function that would "be plugged in":
\[g(x) = x^3 \text{ and } f(x) = \frac{x+1}{x+2} \Rightarrow f(g(x)) = \frac{x^3+1}{x^3+2} \text{ and } g(f(l(x)) = \left(\frac{x+1}{x+2} \right)^3 \]

B. (a) Consider: \[\frac{x+y}{x^2} = \frac{x(x+1)}{x^2} = \frac{x+1}{x} \] This is correct b/c the x can be factored out and cancelled.

\[\frac{x+y^2}{x^2} \neq \frac{x+y^2}{z} \]
This is incorrect b/c we can't factor out an x in x\(y^2\). So we cancel the x in the denominator.

(b) Consider \[\sqrt{x^2+y^4} = \sqrt{(xy)^2} = xy^2 \] This is correct b/c there are 2 copies of \(y^2\) in \(x^2y^4\), so we can simplify the radical.

\[\text{Note: } \sqrt{a^n} = \sqrt{(a^n)^2} = a^n \]

Consider \[\sqrt{x^2+y^4} \neq x+y^4 \]
The mistake made here was simplifying each individual term. In order for this to be true, we need \((x+y^2)^2 = x^2+y^4\) (what's under the radical).
\[4(x+y^2)(y+y^2) = x^2+2y^2+y^4 = x^2+y^4 \]

\[\text{Note: } \sqrt{a^2+b^2} \neq \sqrt{a^2} + \sqrt{b^2} \]